Pulmonary artery root dilatation in Marfan syndrome: quantitative assessment of an unknown criterion
Nollen, G.J.; van Schijndel, K.E.; Timmermans, J.; Groenink, M.; Barentsz, J.O.; van der Wall, E.E.; Stoker, J.; Mulder, B.J.M.

Published in:
Heart

DOI:
10.1136/heart.87.5.470

Citation for published version (APA):
Pulmonary artery root dilatation in Marfan syndrome: quantitative assessment of an unknown criterion

G J Nollen, K E van Schijndel, J Timmermans, M Groenink, J O Barentsz, E E van der Wall, J Stoker and B J M Mulder

Heart 2002;87:470-471
doi:10.1136/heart.87.5.470

Updated information and services can be found at:
http://heart.bmj.com/cgi/content/full/87/5/470

These include:

References
This article cites 5 articles, 3 of which can be accessed free at:
http://heart.bmj.com/cgi/content/full/87/5/470#BIBL
1 online articles that cite this article can be accessed at:
http://heart.bmj.com/cgi/content/full/87/5/470#otherarticles

Rapid responses
You can respond to this article at:
http://heart.bmj.com/cgi/eletter-submit/87/5/470

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Topic collections
Articles on similar topics can be found in the following collections
Congenital heart disease (511 articles)

Notes

To order reprints of this article go to:
http://www.bmjournals.com/cgi/reprintform

To subscribe to Heart go to:
http://www.bmjournals.com/subscriptions/
Marfan syndrome is a connective tissue disorder with manifestations in multiple organ systems. Dilatation of the main pulmonary artery is one of the established criteria for the diagnosis of Marfan syndrome. Normal values have been assessed for the pulmonary artery bifurcation but not for the pulmonary artery root. Since the pulmonary artery root consists basically of the same tissue as the ascending aorta, dilatation of the pulmonary artery might predominantly occur in the root similar to the dilatation process occurring in the ascending aorta in Marfan patients. The prevalence and prognosis of pulmonary artery dilatation in Marfan syndrome is still unknown. The aim of the present study was to assess main pulmonary artery dimensions both at the level of the pulmonary artery bifurcation and at the pulmonary artery root in normal subjects and in Marfan patients with and without aortic root replacement.

METHODS
Fifty consecutive Marfan patients (mean age 33 (10) years, 34 men, 16 women) underwent routine cardiac magnetic resonance (MR) imaging. Thirty five of these patients had previously undergone aortic root replacement. The control group consisted of 15 age and sex matched healthy subjects (mean age 28 (4) years, nine men, six women).

Main pulmonary artery dimensions were assessed with MR imaging on axial spin echo images at two levels: (1) the level of the pulmonary artery bifurcation, and (2) the level of the pulmonary artery root (fig 1). The anterior right diameter of the pulmonary root showed the smallest variability and was used for analysis.

RESULTS
At the pulmonary artery bifurcation the mean (SD) diameter was 24.0 (2.0) mm (range 21.0–27.5 mm) in normal subjects and 30.7 (3.6) mm (range 21.4–38.5 mm) in Marfan patients. The mean diameter of the pulmonary artery root in normal subjects and Marfan patients was 28.8 (3.0) mm (range 23.5–33.9 mm) and 38.4 (5.1) mm (range 28.3–50.7 mm), respectively. The upper limits of normal at the level of the pulmonary artery bifurcation and at the pulmonary artery root in our study were 28.0 mm and 34.8 mm, respectively. Using these cut-off values, 38 (76%) of all Marfan patients had an enlarged pulmonary artery at the level of the bifurcation and 37 (74%) had an enlarged pulmonary artery root (fig 2).

In normal subjects as well as in Marfan patients with and without aortic root replacement, dimensions measured at the pulmonary artery root were significantly larger than dimensions measured at the pulmonary artery bifurcation (p < 0.001). The mean difference between pulmonary artery root diameter and diameter at the pulmonary artery bifurcation was larger in Marfan patients with aortic root replacement than in patients without aortic root replacement.
normal subjects (4.8 (3.2) mm). Marfan patients with aortic root replacement had significantly larger main pulmonary artery diameters at both levels than Marfan patients without aortic root replacement. In Marfan patients without aortic root replacement, diameters were significantly larger at both the pulmonary root and at the pulmonary bifurcation level compared to control subjects (p < 0.001) (fig 2). There was a good correlation between pulmonary artery root diameter and aortic root diameter in non-operated patients (r = 0.76).

DISCUSSION
Our study provides the first clinical data on normal values for main pulmonary artery root diameter and on main pulmonary artery dimensions in Marfan patients. Normal values of pulmonary artery bifurcation diameter were comparable with previously published data.²

Marfan patients with elective aortic root replacement had significantly larger pulmonary artery dimensions than non-operated Marfan patients. A logical explanation would be that patients with an aortic root replacement represent a subgroup of patients in whom the cardiovascular system is more affected and therefore also have increased main pulmonary artery dimensions. This is supported by the good correlation we found between pulmonary and aortic root diameter in non-operated Marfan patients.

The difference between pulmonary artery root diameter and the diameter measured at the pulmonary artery bifurcation was larger in Marfan patients than in normal subjects. This indicates that in Marfan patients dilatation is most prominent in the pulmonary artery root, similar to the dilatation process in the aortic root in Marfan patients. This is consistent with the study of Niwa and colleagues who found the same medial abnormalities in the main pulmonary artery in patients with pulmonary trunk aneurysm, as in the ascending aorta of Marfan patients.¹ Thus, measurement of the pulmonary artery root, and not only at the level of the bifurcation, seems advisable in all Marfan patients.

Main pulmonary artery dilatation and aneurysms are rare and associated with congenital heart disease, most frequently patent ductus arteriosus, followed by ventricular and atrial septal defects. Until now 48 cases of pulmonary artery dissection have been reported, of which only two cases have been in patients with Marfan syndrome.³ The largest pulmonary root diameter found in our study was 50.4 mm, but further pulmonary artery dilatation and dissection could become of clinical relevance in the near future, as survival has greatly increased during the past decades because of improved medical treatment and surgical techniques for aortic complications.

In this study we showed that the main pulmonary artery, particularly the pulmonary artery root, was dilated in the majority of Marfan patients. There was a good correlation between pulmonary and aortic root diameter in non-operated Marfan patients. Marfan patients with aortic root replacement had larger main pulmonary artery diameters than non-operated patients. These findings suggest that dilatation of the pulmonary root increases with progressive involvement of the cardiovascular system in Marfan patients. Although, until now, main pulmonary artery aneurysm and dissection are rare, they may become of more clinical relevance in the near future because of increased longevity in Marfan patients.

Authors’ affiliations
G J Nollen, K E van Schijndel, M Groenink, B J M Mulder, Department of Cardiology, Academic Medical Center, Amsterdam, The Netherlands
J Timmermans, Department of Cardiology, University Medical Center St Radboud, Nijmegen, The Netherlands
J Stoker, Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
J O Barentsz, Department of Radiology, University Medical Center St Radboud, Nijmegen, The Netherlands

E E van der Wall, Department of Cardiology, Leiden University Medical Center, The Netherlands
Correspondence to: Dr BJM Mulder, Department of Cardiology, Room B2-240, Academic Medical Center, Meibergdreef 9, 1100 DD Amsterdam, The Netherlands, b.j.mulder@amic.uva.nl
Accepted 20 December 2001

REFERENCES

WEB TOP 10
www.heartnl.com
These articles scored the most hits on Heart’s web site during February 2002
1 Inflammation in acute coronary syndromes
T Mulvihill, J B Foley
March 2002;87:201–4. [Review]
2 Joint British recommendations on prevention of coronary heart disease in clinical practice
3 Hypertrophic cardiomyopathy: management, risk stratification, and prevention of sudden death
WJ McKenna, ER Behr
February 2002;87:169–76. [Education in Heart]
4 Myocardial molecular biology: an introduction
NJ Brand, PJR Barton
March 2002;87:284–93. [Education in Heart]
5 Which patient should be referred to an electrophysiologist: supraventricular tachycardia
RJ Schilling
March 2002;87:299–304. [Education in Heart]
6 Cardiac transplantation
MC Deng
February 2002;87:177–84. [Education in Heart]
7 Inflammatory gene polymorphism and ischaemic heart disease: review of population association studies
F Andreotti, J Porto, F Crema, A Maseri
February 2002;87:107–12. [Review]
8 The “no-reflow” phenomenon: basic science and clinical correlates
T Reffelmann, RA Kloner
February 2002;87:162–8. [Education in Heart]
9 Timing of mitral valve surgery
M Enriquez-Sarano
January 2002;87:79–85. [Education in Heart]
10 Death following coronary angioplasty
HH Gray, KG McCullum
March 2002;87:186–6. [Editorial]
Visit the Heart website for hyperlinks to these articles, by clicking on “Top 10 papers”
www.heartnl.com