Precision of the ATLAS muon spectrometer
Woudstra, M.J.

Citation for published version (APA):
Woudstra, M. J. (2002). Precision of the ATLAS muon spectrometer

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

Introduction11

Chapter 1 The Large Hadron Collider and the ATLAS experiment19
1.1 The Large Hadron Collider19
1.2 The LHC physics program in a nutshell 20
1.3 The ATLAS experiment 22
 1.3.1 The inner detector22
 1.3.2 The calorimeters24
 1.3.3 The muon spectrometer24
 1.3.4 The trigger system26

Chapter 2 Muon spectrometer design29
2.1 Overview29
2.2 Muon measurement principle31
2.3 Monitored drift tube chambers31
 2.3.1 Operating principle32
 2.3.2 Single drift tube33
 2.3.3 Full chamber34
 2.3.4 Projective tower37
2.4 Rasnik alignment monitor38
 2.4.1 Basic principle38
 2.4.2 The mask, lens, sensor and read-out38
 2.4.3 Image analysis40
 2.4.4 Performance40
2.5 Alignment of the chambers44
 2.5.1 In-plane system44
 2.5.2 Projective system45
 2.5.3 Praxial and other systems45
 2.5.4 Calibration of the alignment systems47
2.6 Muon momentum resolution48

Chapter 3 Muon chamber mechanical precision51
3.1 The X-ray tomograph51
 3.1.1 Principle of operation51
 3.1.2 The X-ray beams and scintillator counters52
 3.1.3 The interferometers52
 3.1.4 The calibration rulers53
 3.1.5 X-ray tomograph scan output: the shadowgrams54
3.2 Wire reconstruction algorithms55
Chapter 4 Muon chamber measurement precision 87
 4.1 The BOL cosmic ray test stand 87
 4.1.1 The muon drift chambers 87
 4.1.2 The muon trigger 88
 4.2 Calibration of the drift tubes 89
 4.2.1 Signal propagation along the drift tube 89
 4.2.2 Time of flight of the muon 92
 4.2.3 t_0 and t_{max} calibration 93
 4.2.4 r-t calibration and resolution determination 95
 4.3 Track reconstruction 100
 4.3.1 Pattern recognition 100
 4.3.2 Track fit 102
 4.3.3 Drift tube detection efficiency and hit-on-track efficiency 105
 4.4 Results on BOL chambers 107
 4.4.1 Dead and noisy channels 107
 4.4.2 Uniformity of the operating point 108
 4.4.3 Efficiency 109
 4.4.4 Resolution 109
 4.4.5 Track reconstruction precision 110

Chapter 5 Muon chamber alignment precision 113
 5.1 Method of verification 113
 5.2 Description of the DATCHA set-up 114
Precision of the ATLAS muon spectrometer

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.1 Scintillating hodoscope</td>
<td>114</td>
</tr>
<tr>
<td>5.2.2 Resistive plate chambers</td>
<td>115</td>
</tr>
<tr>
<td>5.2.3 Muon trigger</td>
<td>115</td>
</tr>
<tr>
<td>5.2.4 Muon drift tube chambers</td>
<td>115</td>
</tr>
<tr>
<td>5.2.5 Detector control</td>
<td>117</td>
</tr>
<tr>
<td>5.2.6 Alignment systems</td>
<td>118</td>
</tr>
<tr>
<td>5.3 Simulation of the DATCHA set-up</td>
<td>118</td>
</tr>
<tr>
<td>5.4 Analysis framework</td>
<td>120</td>
</tr>
<tr>
<td>5.5 Global track reconstruction and sagitta calculation</td>
<td>120</td>
</tr>
<tr>
<td>5.6 Geometry reconstruction using straight muon tracks</td>
<td>125</td>
</tr>
<tr>
<td>5.6.1 Geometrical model</td>
<td>125</td>
</tr>
<tr>
<td>5.6.2 Determination of the geometrical parameters</td>
<td>125</td>
</tr>
<tr>
<td>5.6.3 Monte Carlo results</td>
<td>127</td>
</tr>
<tr>
<td>5.6.4 Real data results</td>
<td>128</td>
</tr>
<tr>
<td>5.7 Alignment system sagitta compared to muon track sagitta</td>
<td>131</td>
</tr>
</tbody>
</table>

Chapter 6 Conclusions

Appendix A X-ray tomograph analysis details

- A.1 Systematic effects due to X-ray beams a-planarity | 137
- A.2 Geometrical parameters | 142

Appendix B Twin tubes

- B.1 Concept | 145
- B.2 Results | 147
- B.3 Conclusion | 148

Appendix C Fitting a model to data using χ^2 minimisation

- Bibliography | 153
- Summary | 157
- Samenvatting | 161
- Acknowledgements / Dankwoord | 165

Contents

9