Numerical methods for steady free surface flows
van Brummelen, E.H.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Subject Index

adaptivity, 56, 79
adjoint
 — equation, 36, 56
 — method, 4, 36, 55, 56, 58, 60, 61, 63, 64, 68–74, 76, 78, 106–108, 120
 — operator, 60
asymptotic
 — behavior, 3, 16, 31, 32, 43–45, 70–74, 76, 105, 107, 119, 120
 — expansion, 18, 19, 24, 25, 31, 39, 43, 44, 48, 64, 71, 88, 89
 — sequence, 18
 — series, 18
 — solution, 17

barotropic, see equation of state
Bernoulli’s equation, 57
boundary condition, 3, 4, 10, 14, 19, 23, 39, 45–47, 50, 51, 55, 57, 108
 absorbing —, 10, 108
 free-slip —, 16, 42, 108
 no-slip —, 34, 50, 107
 stress-free —, 108
boundary layer, 2, 34, 36, 50
boundary value problem, 4, 10, 47, 49, 55, 57–60, 64, 75, 108
 initial —, 10, 15, 39
 initial —, 3
Buckley-Leverett equation, 82
Burgers equation, 89
CFL
 — condition, 45, 46, 53, 78
 — number, 101
classical solution, 81–83
compatibility, 25–27
complex conjugate, 66
computational complexity, 4, 42, 44, 46, 49, 53, 105, 120
conservation
 — form, 91, 92, 102, 109
 — law, 7
 — of energy, 8, 9
 — of mass, 8, 9, 91, 103
 — of momentum, 8, 9, 11, 37, 91, 103
conservative discretization, 4, 80, 100, 102, 106, 109, 120
constitutive relation, 8, 9
constraint, 47, 58, 59, 61
contact
 — discontinuity, 79, 81–84, 87, 88, 98, 101, 106
 — line, 108
 — speed, 84, 90
continuity, 11, 12, 39
contraction number, 48, 49, 51, 68, 69
correction method, 80
cost functional, 47, 48, 57–64, 66, 67, 72
critical mode, 67, 69–71, 74, 78, 106, 108
descent direction, 60

125
discretization error, 45, 49

— analysis, 3, 4, 15, 56, 63, 64, 105, 119, 120
— component, 28, 29, 72, 73
— integral, 25, 27, 43, 44
— mode, 21, 25, 28, 43, 65, 66, 69, 70, 72
— symbol, 21, 66, 67, 69, 72–74
— transform, 27, 44, 66
 inverse —, 31, 32, 66
free boundary, see free surface
 boundary layer, 3, 16, 32–34, 40, 105, 119
 condition, 3, 4, 7, 12–14, 16, 19, 36, 39, 41, 45, 47, 55, 57
 flow, 1–4, 7, 8, 14–18, 28, 30, 32, 35–39, 41, 42, 44–47, 49, 53–58, 63, 64, 67, 69, 72, 73, 76, 78, 79, 105–109, 119, 120
 Fröbenius number, 9, 10, 16, 32, 37, 44–46, 57, 67
generalized function, 27
generating solution, 17
generic mode, 21–23
genuinely nonlinear, 81–84, 96, 98
ghost fluid method, 80
Godunov
 — flux, 85, 89, 90, 101
 — method, 4, 79, 85, 91, 120
 gradient, 58, 62, 64, 65, 72, 73, 75
group velocity, 32, 44, 107
 height function, 32, 44, 107
 Hessian, 32, 44, 63–67
 homentropic, 93, 94
 hydrodynamic, 37, 40

property, 25, 27, 35, 36, 39–42, 45, 47, 49
 normal —, 11, 12, 36, 39–42, 47
tangential —, 11, 12, 36, 39, 41, 43, 47, 49
 iteration, 36
 viscosity, 9

eddy viscosity, 38, 50
entropy condition, 81
equation of state, 9, 93, 95, 97, 99, 100, 102, 103
 Tait’s —, 93
 barotropic —, 9, 93, 104, 106, 120
 compound —, 94, 104
error estimation, 56
Euler equations, 8, 14, 91, 93
evaluation error, 45, 71, 72, 75, 76
existence, 10, 27, 84
expansion, see asymptotic expansion
finite element method, 2, 75, 79
finite volume method, 2, 79
first-order perturbation, see infinitesimal perturbation
flux, 79, 85, 87–89, 120
 — difference splitting, 80
 — function, 80, 95, 97
 — vector splitting, 80
formal solution, 18
forward Euler discretization, 101, 102, 104
Fourier
Subject Index

hydrostatic, 37, 38, 40
hyperbolic, 45
— conservation law, 4, 85, 91, 120
— problem, 4, 85, 109
— system, 10, 81, 120

ill posed, see posedness
implicit function theorem, 87, 88
infinitesimal
— condition, 18, 20, 27
— perturbation, 16, 18, 19, 21, 24, 25, 27–29
initial condition, 3, 10, 17, 18, 20, 25–28, 45, 80, 93, 100–103
interface, 1, 7, 10–14, 38, 39, 79, 91, 98, 109
— capturing, 4, 79, 80, 100, 106, 109, 120
— condition, 3, 7, 10–13, 38, 98, 106
intermediate state, 87–90, 98, 99
internal energy, 8, 9
inviscid mode, 22, 24, 26
irrotational, 4, 56

kinematic
— condition, 11–13, 16, 35, 36, 39–42, 45, 47, 57–60, 91, 98, 106
— iteration, 36

level set, 13, 91
linearly degenerate, 81–84, 86–88, 96, 98

mass fraction, 103
method of stationary phase, 31, 44
monotonicity, 79
multiplicity, 86, 87, 98

Navier–Stokes equations, 1–4, 9, 35–39, 41, 42, 45, 53, 55, 56, 105–107, 119, 120
Reynolds averaged —, 35, 38, 50
dimensionless —, 9, 16

nested iteration, 4, 49, 53, 105, 107–109
Newton's method, 2, 36, 99
Newtonian fluid, 9, 38
non-convex, 63
non-oscillatory discretization, 4, 80, 100, 103, 106, 109, 120
numerical dissipation, 86

O-variant, 86–88
odd/even oscillation, 75
optimal shape design, 4, 36, 47, 55–58, 63, 67, 76, 78, 106–108, 120
Osher
— flux, 89, 99
— path, 86
— scheme, 4, 80, 85–89, 91, 101, 106, 120

P-variant, 86–89
Parseval's identity, 68
partial density, 103
perturbation method, 3, 15, 105, 119, 120
phase velocity, 25, 28
posedness, 3, 10, 28, 47, 57, 63, 66, 67, 69
potential flow, 2–4, 14, 35, 36, 43, 55–57, 64, 76, 106, 109, 119, 120
preconditioning, 4, 36, 56, 71–76, 78, 106, 120

pressure
— defect, 49, 51
— invariance, 80, 100–104, 106, 120
— oscillation, 4, 80, 100, 102, 106, 109, 120
primal problem, 61, 63, 64
primitive variable, 3, 15, 16, 105, 119
pseudo
— differential operator, 73
— dispersion relation, 71
— time, 36, 70, 71
QFSC method, 107, 108
quasi free-surface
 — condition, 3, 37, 39–41, 46, 49, 53, 55, 105, 107, 108, 120
 — flow, 41–43, 51
quasi-steady method, 36
radiation condition, 57, 75
Rankine–Hugoniot relation, 84
RANS equations, see Navier–Stokes equations
rarefaction
 — path, 82, 83, 86–88
 — wave, 81–84, 90
rarefaction wave, 87
reference
 — density, 9, 13
 — length, 9, 37, 42, 50, 57
 — pressure, 9, 93
 — scale, 9, 12, 79
 — stress, 13
 — surface, 13
 — velocity, 9, 13, 29, 37, 42, 50, 57
residual, 4, 47, 51, 55, 57, 58
Reynolds number, 9, 36–38, 43, 54, 105, 107, 120
Riemann
 — invariant, 82, 83, 87–89, 95–98
 — problem, 79–85, 87, 92, 93, 98
 — solution, 79, 83–85, 88–90
 approximate —, 85, 87–90, 98
 — solver, 4, 80, 85, 106, 120
shape optimization, see optimal shape design
ship hydrodynamics, 2, 15, 35, 36, 54, 55, 105
shock
 — path, 82, 83
 — speed, 82, 84, 90
 — strength, 88, 89
 — wave, 80–84, 87–90, 101, 109
similarity
 — form, 82, 83, 85, 87
 — solution, 83, 84
 — simple wave, 83, 88–90, 98
stability, 10, 15, 45, 67–69, 71, 73, 74, 105, 120
 — von Neumann —, 15
stationary point, 31, 32, 44, 71
 — critical —, 71
stratified flow, 15
subcritical, 30, 32, 44–46, 50, 72, 74–76, 78, 106
subpath, 86–90
successive approximation, 36
supercritical, 30, 32, 44, 72, 74–76, 78, 106
thermal conductivity, 8
total energy, 8
turbulence, 38
 — model, 38
two-fluid, 4, 7, 10, 12, 14, 38, 79, 80, 91, 93, 94, 98, 100, 102, 103, 106, 109, 120
uniform flow, 15–17, 42, 43, 64, 67, 105, 106
uniqueness, 10, 28, 45, 57, 58, 67, 83
upwind scheme, 86
variational
 — formulation, 81
 — problem, 81, 83, 84
viscous mode, 22–24, 26
viscous stress tensor, 8, 9, 13, 14, 38
 — dimensionless —, 9
volume fraction, 94, 100, 102, 103
wave
Subject Index

— group, 3, 16, 27-29, 31, 32, 69, 105, 119, 120
— length, 30, 50, 52, 76
— number, 21, 24, 28-31, 43, 65-69, 71, 73-75
— pattern, 2, 35, 55
— profile, 51, 52
weak
— formulation, 81, 91, 92, 100, 102, 104
— solution, 81-84
well posed, see posedness