Chern-Simons theory and the quantum Racah formula

Sebastian de Haro and Atle Hahn

October 26, 2018

Abstract

We generalize several results on Chern-Simons models on $\Sigma \times S^1$ in the so-called “torus gauge” which were obtained in [33] (= arXiv:math-ph/0507040) to the case of general (simply-connected simple compact) structure groups and general link colorings. In particular, we give a non-perturbative evaluation of the Wilson loop observables corresponding to a special class of simple but non-trivial links and show that their values are given by Turaev’s shadow invariant. As a byproduct we obtain a heuristic path integral derivation of the quantum Racah formula.

1 Introduction

In 1988 E. Witten succeeded in defining, on a physical level of rigor, a large class of new 3-manifold and link invariants with the help of the heuristic Chern-Simons path integral, cf. [58]. Later a rigorous definition of these invariants was given, cf. [45, 44] and part I of [52]. The approach in [45, 44] is based on the representation theory of quantum groups and uses surgery techniques on the base manifold. A related approach is the so-called “shadow world” approach (cf. [41, 54, 53] and part II of [52]), which also works with quantum groups but replaces the use of surgery operations by certain combinatorial arguments leading to finite “state sums”.

It is an open problem (cf., e.g., p. 2 in [25] and Problem (P1) in [33]) how the rigorous approaches using quantum groups are related to Witten’s path integral approach. This problem is interesting by itself. Moreover, one can expect that the solution of this problem will lead to some progress towards the solution of one of the central open problems in the field, namely the question if/how one can make rigorous sense of the path integral expressions used in the heuristic treatment in [58] (cf. Sec. 7 below for additional comments).

The results in [33], which were obtained by extending the work in [12, 13, 14, 31] in a suitable way, suggest that the key for establishing a direct relationship between the CS path integral and the two quantum group approaches mentioned above is the so-called “torus gauge fixing” procedure, introduced in [12] for the study of CS models on base manifolds M of the form $M = \Sigma \times S^1$. Indeed, already in [12] it was demonstrated that in the torus gauge setting the evaluation of the Wilson loop observables (WLOs) of special links consisting exclusively of “vertical loops” naturally leads to the S-matrix expressions on the right-hand side of the so-called Verlinde formula, cf. expression (14) below and Remark 4 in Sec. 6. In [33] it was then shown how to treat the case of general links within (a suitably modified version of) the torus gauge setting. Moreover, it was shown that in the special case $G = SU(2)$ the evaluation of the Wilson loop observables of loops without double points naturally leads to the gleam factors and the summation over (admissible) “area colorings” present in Turaev’s formula for the shadow invariant (cf. Eq. (23) below). In the present paper we will generalize the results in [33] to general (simply-connected simple compact) groups G and to links with arbitrary “colors”, i.e. equipped with arbitrary representations (and not only the fundamental representation as in [33]). As a result we will be able to demonstrate that within the torus gauge setting also the fusion coefficients (i.e. the numbers N_{ji} in Eq. (19)) in Turaev’s formula for the shadow invariant appear naturally when links without double points are studied.

We mention here that Turaev’s shadow invariant also appears in the evaluation of a purely two-dimensional quantum field theory, namely q-deformed Yang-Mills theory on a Riemannian surface Σ [20]. The connection of the latter with Chern-Simons on S^1-bundles over Σ, of which $S^1 \times \Sigma$ is a special case, was developed in [19, 20, 1, 21, 22, 15]. The algebraic lattice formulation of q-deformed two-dimensional

\footnote{In fact, the approach in [45, 44, 52] is more general, cf. Remark 2 below}
Yang-Mills has been worked out for real \(q \) and not for \(q \) being a root of unity \[13 \]. Although we will not further develop the connection to this two-dimensional theory in this paper, we note that the intermediate expressions we obtain in our evaluation of the Chern-Simons path integral are those of \(q \)-deformed two-dimensional Yang-Mills. In turn, the path integral formulation of the simpler two-dimensional quantum field theory may be helpful in defining the Chern-Simons path integral on non-trivial bundles over \(\Sigma \) \[15, 11 \].

The paper is organized as follows. In Subsec. \(2.1 \) we first recall some important concepts and construction from Lie theory. In Subsec. \(2.2 \) we then introduce some concepts from Conformal Field Theory and the theory of affine Lie algebras which played a role in \[58 \]. In Sec. \(4 \) we reformulate Turaev’s shadow invariant for manifolds of the form \(\Sigma \times S^1 \). In turn, the path integral formulation of the simpler two-dimensional quantum expressions we obtain in our evaluation of the Chern-Simons path integral are those of \(\Sigma \times S^1 \) \[15, 11 \]. We set \(\hat{\Lambda} \) denote the \((\cdot,\cdot) \)-orthogonal complement of \(\mathfrak{t} \) in \(\mathfrak{g} \).

\(\mathfrak{R} \subset \mathfrak{t}^* \) will denote the set of real roots associated to \((\mathfrak{g},\mathfrak{t}) \) and \(\hat{\mathfrak{R}} \) the set of real coroots, i.e. \(\hat{\mathfrak{R}} \) is given by \(\hat{\mathfrak{R}}:=\{\hat{\alpha} \mid \alpha \in \mathfrak{R}\} \subset \mathfrak{t} \) where \(\hat{\alpha}:={\frac{2\pi}{(\alpha,\alpha)}} \). Let \(\Lambda \subset \mathfrak{t}^* \) denote the real weight lattice associated to \((\mathfrak{g},\mathfrak{t}) \), i.e. \(\Lambda \) is given by

\[
\Lambda:=\{\lambda \in \mathfrak{t}^* \mid \lambda(\hat{\alpha}) \in \mathbb{Z} \text{ for all } \alpha \in \mathfrak{R}\}
\] (1)

\(\Lambda_{\mathfrak{R}} \subset \mathfrak{t} \) will denote the lattice generated by the real coroots.

A Weyl chamber is a connected component of \(\mathfrak{t} \setminus \bigcup_{\alpha \in \mathfrak{R}} \mathcal{H}_\alpha \) where \(\mathcal{H}_\alpha:=\alpha^{-1}(0) \). A Weyl alcove (or “affine Weyl chamber”) is a connected component of the set\(^2 \) \(\mathcal{A}_{\mathfrak{reg}}:=\mathfrak{t} \setminus \bigcup_{\alpha \in \mathfrak{R}, k \in \mathbb{Z}} \mathcal{H}_{\alpha,k} \) where \(\mathcal{H}_{\alpha,k}:=\alpha^{-1}(k) \).

Let \(\mathcal{W} \) denote the Weyl group (associated to \(\mathfrak{g} \) and \(\mathfrak{t} \)), i.e. the group of isometries of \(\mathfrak{t} \cong \mathfrak{t}^* \) generated by the orthogonal reflections on the hyperplanes \(\mathcal{H}_\alpha, \alpha \in \mathfrak{R}, \) defined above. \(\mathcal{W}_{\mathfrak{aff}} \) will denote the affine Weyl group, i.e. the group of isometries of \(\mathfrak{t} \cong \mathfrak{t}^* \) generated by the orthogonal reflections on the hyperplanes \(\mathcal{H}_{\alpha,k}, \alpha \in \mathfrak{R}, k \in \mathbb{Z}, \) defined above\(^3 \). For \(\tau \in \mathcal{W}_{\mathfrak{aff}} \) we will denote the sign of \(\tau \) by \(\text{sgn}(\tau) \).

In the sequel let us fix a Weyl chamber \(\mathcal{C} \). Let \(\mathcal{P} \) denote the unique Weyl alcove which is contained in \(\mathcal{C} \) and has \(0 \in \mathfrak{t} \) on its boundary.

- Let \(\mathfrak{R}_+ \) denote the set of positive roots, i.e. \(\mathfrak{R}_+:=\{\alpha \in \mathfrak{R} \mid (\alpha,x) \geq 0 \text{ for all } x \in \mathcal{C}\} \), and let \(\Lambda_+ \) denote the set of “dominant weights”, i.e. \(\Lambda_+:=\Lambda \cap \mathcal{C} \).

\(^2 \)Note that in \[31 \] we used the notation \(\mathcal{A}_{\mathfrak{reg}} \) instead of \(\mathcal{A}_{\mathfrak{reg}} \).

\(^3 \)Equivalently, one can define \(\mathcal{W}_{\mathfrak{aff}} \) as the group of isometries of \(\mathfrak{t} \cong \mathfrak{t}^* \) generated by \(\mathcal{W} \) and the translations associated to the coroot lattice \(\Lambda_{\mathfrak{R}} \).
For $\lambda \in \Lambda_+$ let ρ_λ denote the (up to equivalence) unique irreducible complex representation of G with highest weight λ and χ_λ the character corresponding to ρ_λ. The multiplicity of the global weight associated to μ in χ_λ will be denoted by $m_\lambda(\mu)$, i.e. we have

$$\chi_\lambda(\exp(b)) = \sum_{\mu \in \Lambda} m_\lambda(\mu)e^{2\pi i (\mu, b)} \quad \text{for all } b \in \mathfrak{t}$$

(2)

- ρ will denote the half-sum of the positive roots and θ the unique long root in the Weyl chamber C.
- The dual Coxeter number c_θ of \mathfrak{g} is given by

$$c_\theta = 1 + (\theta, \rho)$$

(3)

- For each $\lambda \in \Lambda_+$ we set

$$C_2(\lambda) := (\lambda, \lambda + 2\rho)$$

(4)

i.e., $C_2(\lambda)$ is the second Casimir element (w.r.t. to the inner product (\cdot, \cdot)) corresponding to the irreducible representation of \mathfrak{g} with highest weight λ.

- For $\lambda \in \Lambda_+$ let $\overline{\lambda} \in \Lambda_+$ denote the weight conjugated to λ and $\lambda^* \in \Lambda_+$ the weight conjugated to λ “after applying a shift by ρ”. More precisely, λ^* is given by $\lambda^* + \rho = \overline{\lambda} + \rho$.

Remark 1 Let $I \subset \mathfrak{t}$ denote the “integral lattice”, i.e. $I := \ker(\exp|_I)$. From the assumption that G is simply-connected it follows that I coincides with the lattice Λ_R generated by the real coroots so the weight lattice Λ associated to $(\mathfrak{g}, \mathfrak{t})$ coincides with the weight lattice I^* of (G, T) given by $I^* := \{\alpha \in \mathfrak{t}^* \mid \alpha(x) \in \mathbb{Z} \text{ for all } x \in I\}$.

2.2 Some concepts from CFT, the theory of affine Lie algebras, and the theory of quantum groups

Let us fix $k \in \mathbb{N}$ (the “level”).

- We set

$$\Lambda^k_+ := \{\lambda \in \Lambda_+ \mid (\lambda, \theta) \leq k\}$$

(5)

- Let Isom(\mathfrak{t}) denote the group of isometries of the Euclidean vector space $(\mathfrak{t}, (\cdot, \cdot))$ and let $i : \text{Isom}(\mathfrak{t}) \to \text{Isom}(\mathfrak{t})$ denote the automorphism of Isom(\mathfrak{t}) given by

$$i(\tau)(b) = (k + c_\theta) \cdot \tau((b + \rho)/(k + c_\theta)) - \rho$$

(6)

for all $b \in \mathfrak{t}$ and $\tau \in \text{Isom}(\mathfrak{t})$. We set

$$W_k := i(W_{\text{aff}}) \subset \text{Isom}(\mathfrak{t})$$

(7)

(the “(ρ-shifted) quantum Weyl group corresponding to the level k”) and

$$\text{sgn}(\tau) := \text{sgn}(i^{-1}(\tau)) \quad \text{for } \tau \in W_k$$

- Let C, S, and T be the $\Lambda_+^k \times \Lambda_+^k$ matrices with complex entries given by

$$C_{\lambda\mu} := \delta_{\lambda\mu^*},$$

$$T_{\lambda\mu} := \delta_{\lambda\mu} e^{\frac{\pi i C_2(\lambda)}{\pi} \cdot e^{-\frac{\pi i}{4}}}$$

(8a)

$$S_{\lambda\mu} := \frac{j|\mathbb{R}_+|}{(k + c_\theta)^{1/2}} |\Lambda/\Lambda_R|^{-\frac{1}{2}} \sum_{w \in W} \text{sgn}(w) e^{\frac{2\pi i}{\theta}(\lambda + \rho, w^{-1}(\mu + \rho))}$$

(8b)

\footnote{Note that $c_\theta = 1 + (\theta, \rho) = \frac{1}{2}(\theta, \theta + 2\rho) = \frac{1}{2}C_2(\theta)$. If we had normalized the Killing form (\cdot, \cdot) such that the long roots have length 1 we would have $c_\theta = C_2(\theta)$, i.e. c_θ would then be the Casimir element associated to the adjoint representation.}

\footnote{W_k coincides with the subgroup of Isom(\mathfrak{t}) which is generated by the orthogonal reflections on the ρ-shifted hyperplanes $H_\alpha - \rho$, $\alpha \in \mathbb{R}_+$, and the hyperplane $\{y \in \mathfrak{t} \mid (y, \theta) = k + c_\theta\} - \rho = \{x \in \mathfrak{t} \mid (x, \theta) = k + 1\}$, thus W_k is the same as the group W_0 in [6].}
for all $\lambda, \mu \in \Lambda^k_+$, cf. Eqs. (14.216), (14.217), and (14.229) in Ref. 23 and compare also Sec. II.3.9 in Ref. 52 where a slightly different convention is used.\footnote{The matrix C is called J in Ref. 52. Moreover, the matrix S in Ref. 52 differs from the matrix S in Eq. (8c) by a multiplicative constant $-\Delta^*$, cf. the “Notes” at the end of Chap. II in Ref. 52.}

We remark that the factor $e^{-2\pi i \rho}$ with $c := \dim(\mathfrak{g}) \cdot \frac{k}{(k+\epsilon q)}$ appearing in Eq. (8b) is not really essential for the present paper. In particular, the definition of $|X_L|$ in Eq. (10) below and Theorem 5.1 below (and also the computations in Sec. 9 below) are not affected if we omit this factor. The advantage of including the factor $e^{-2\pi i \rho}$ in Eq. (8b) is that Eq. (9b) below holds in the “strict sense” and not only in the “projective sense”. This point simplifies the computations in our examples in Sec. 3.1.2.

One can prove (cf. Eqs. (10.206), (10.216), (14.228) and Exercise 14.14 in Ref. 23 and Sec. II.3.9 in Ref. 52) that

$$S^2 = C,$$

$$(ST)^3 = C \quad \text{(9a)}$$

In particular, S is invertible.

- For $\lambda \in \Lambda^k_+$ we set

$$\dim \lambda := \frac{S_{\lambda 0}}{S_{00}} = \prod_{\alpha \in \mathcal{R}_+} \frac{\sin \frac{\pi(\lambda + \rho, \alpha)}{k+c_\mathfrak{g}}}{\sin \frac{\pi(\rho, \alpha)}{k+c_\mathfrak{g}}} \quad \text{(10)}$$

Here (*) follows from $\frac{S_{\lambda 0}}{S_{00}} = \frac{A(\rho)(\lambda + \rho)}{A(\rho)(\rho)}$ and the relation\footnote{cf. step (**) in the proof of part iii) of Lemma 1 below} $\delta(b) = A(\rho)(b)$ where

$$A(b')(b) := \sum_{w \in \mathcal{W}} \text{sgn}(w) e^{2\pi i (b', w \cdot b)}$$

$$\delta(b) := \prod_{\beta \in \mathcal{R}_+} \left(e^{\pi i \beta(b)} - e^{-\pi i \beta(b)} \right) = \prod_{\beta \in \mathcal{R}_+} 2i \sin(\pi(b, \beta)).$$

for all $b, b' \in \mathfrak{t}$.

- For $\lambda, \mu, \nu \in \Lambda^k_+$ we define the “fusion coefficients” $N_{\lambda \mu \nu}$ and $N_{\lambda \mu \nu}^\lambda$ by

$$N_{\lambda \mu \nu} := \sum_{\sigma \in \Lambda^k_+} \frac{S_{\lambda \sigma} S_{\mu \sigma} S_{\nu \sigma}}{S_{00}} \quad \text{(11)}$$

and

$$N_{\lambda \mu \nu}^\lambda := N_{\lambda \mu \nu} \quad \text{(12)}$$

Observe that Eq. (9a) implies $N_{\mu 0} = \delta_{\mu 0}$.\footnote{in Sec. II.3.9 in Ref. 52 the expression $\mathcal{D}^{-1} \Delta$ appears. The computations in Ref. 52 imply Eq. (9b) provided that $\mathcal{D}^{-1} = e^{-2\pi i} = (e^{-2\pi i})^3$. In view of the results in Ref. 23 this is exactly what one expects.}

Let us motivate the use of the term “fusion coefficients” above. Let $\hat{\mathfrak{g}}$ denote the (non-twisted) affine Lie algebra corresponding to $\mathfrak{g}_C := \mathfrak{g} \otimes \mathbb{C}$ (cf. Eq. (14.13) in Ref. 24) and let $\hat{N}_{\lambda \mu \nu}$ be the fusion coefficients of the modular tensor category based on the integrable representations of $\hat{\mathfrak{g}}$ at level k. Similarly, let $\hat{N}_{\lambda \mu \nu}^\lambda$ be the fusion coefficients in the modular tensor category constructed in Ref. 10 using the representation theory of the quantum group $U_q(\mathfrak{g}_C)$ with $q := e^{2\pi i}$.\footnote{cf. part iii) of Theorem 1.7 in Chap. VI of Ref. 17.}

\footnote{cf. e.g., Ref. 17.} Sometimes in the literature a different convention is used for the definition of $U_q(\mathfrak{g}_C)$, which leads to the formula $q := e^{\frac{2\pi i}{k+c_\mathfrak{g}}}$ where D is the quotient of the square lengths of the long and the short roots of \mathfrak{g} (cf., e.g., the second page of the introduction in Ref. 18).}
According to the famous “Verlinde(-Moore-Seiberg) formula” we have
\[
\hat{N}^\lambda_{\mu\nu} = N^\lambda_{\mu\nu}
\] (13a)
cf., e.g., [27]. Similarly, according to the quantum group analogue of the Verlinde formula (cf., e.g., Theorem 4.5.2 in Chap. II in [52]) we have:1_{12}
\[
\hat{N}^\lambda_{\mu\nu} = N^\lambda_{\mu\nu}
\] (13b)
Moreover, in [46] it was proven that
\[
\hat{N}^\beta_{\gamma\alpha} = \sum_{\tau \in W_\pm} \text{sgn}(\tau) m_{\gamma}(\alpha - \tau(\beta))
\] (14)
The last formula can be considered to be a “quantum analogue” of the classical Racah formula. Following [48] we will call this formula the “(abstract) quantum Racah formula” and the formula
\[
N^\beta_{\gamma\alpha} = \sum_{\tau \in W_\pm} \text{sgn}(\tau) m_{\gamma}(\alpha - \tau(\beta)),
\] (15)
which follows from Eq. (14) and (13b) will be called the “elementary quantum Racah formula”.

3 The shadow invariant for links in \(\Sigma \times S^1\)

3.1 Definition
Let \(\Sigma\) be an oriented surface, let \(L = (l_1, l_2, \ldots, l_n)\), \(n \in \mathbb{N}\), be a sufficiently regular link in \(\Sigma \times S^1\), and let \(l^1_{Y_1}\), resp. \(l^2_{Y_2}\), denote the projection of the loop \(l_j\) onto the \(S^1\)-component resp. \(\Sigma\)-component of the product \(\Sigma \times S^1\). \(L\) can be turned into a framed link by picking for each loop \(l_j\) the standard framing described in Sec. 4 c) in [53] (this framing was called “vertical framing” in [33]). We also assume that each loop \(l_j\) is colored with an element \(\gamma_j\) of \(\Lambda_L\).

We set \(D(L) := (DP(L), E(L))\) where \(DP(L)\) denotes the set of double points of \(L\), i.e. the set of points \(p \in \Sigma\) where the loops \(l^1_{Y_1}, j \leq n\), cross themselves or each other, and \(E(L)\) the set of curves in \(\Sigma\) into which the loops \(l^1_{Y_1}, l^2_{Y_2}, \ldots, l^2_{Y_2}\) are decomposed when being “cut” in the points of \(DP(L)\). Clearly, \(D(L)\) can be considered to be a finite (multi-)graph. We set \(\Sigma \setminus D(L) := \Sigma \setminus (\bigcup \text{arc}(l^1_{Y_1}))\). We assume that the set of connected components of \(\Sigma \setminus D(L)\) has only finitely many elements \(Y_0, Y_1, Y_2, \ldots, Y_\mu, \mu \in \mathbb{N}\), which we will call the “faces” of \(\Sigma \setminus D(L)\).

As explained in [53] one can associate in a natural way a number \(g(Y_i) \in \mathbb{Z}\), called “gleam” of \(Y_i\), to each face \(Y_i\) (for an explicit formula for the gleams in the special cases that will be relevant for us later see Eq. (21) below). We call \(X_L := (D(L), (g(Y_i))_{0 \leq \mu \leq \mu})\) the “shadow” of \(L\).

Let \(g \in E(L)\) be a fixed edge of the graph \(D(L)\). Note that, as each loop \(l^j\) is oriented, \(g\) is an oriented curve in \(\Sigma\). On the other hand, as \(\Sigma\) was assumed to be oriented, each face \(Y \in \{Y_0, Y_1, Y_2, \ldots, Y_\mu\}\) is an oriented surface and therefore also induces an orientation on its boundary \(\partial Y\).

There is a unique face \(Y_g\), denoted by \(Y^+_g\) (resp. \(Y^-_g\)) in the sequel, such that \(\text{arc}(g) \subset \partial Y\) and, additionally, the orientation on \(\text{arc}(g)\) described above coincides with (resp. is opposite to) the orientation which is obtained by restricting the orientation on \(\partial Y\) to \(g\). In other words: \(Y^+_g\) and \(Y^-_g\) are the two faces that “touch” the edge \(g\), and \(Y^+_g\) (resp. \(Y^-_g\)) is the face lying “to the left” (resp. “to the right”) of \(g\), cf. Fig. 1

A mapping \(\varphi : \{Y_0, Y_1, Y_2, \ldots, Y_\mu\} \to \Lambda^L_+\) will be called an area coloring of \(X_L\) (with colors in \(\Lambda^L_+\)) and the set of all such area colorings will be denoted by \(\text{col}(X_L)\). We can now define the shadow invariant \(\left| \cdot \right|\) by
\[
\left| X_L \right| := \sum_{\varphi \in \text{col}(X_L)} \left| X_L \right|^g_{\varphi} \left| X_L \right|_{\varphi} \left| X_L \right|_{\varphi}^g \left| X_L \right|_{\varphi}^g
\] (16)

11 of course Eqs. (13a) and (13b) imply \(N^\lambda_{\mu\nu} = \hat{N}^\lambda_{\mu\nu}\). This is not surprising since the two modular tensor categories mentioned above can be shown to be equivalent, cf. [24].

12 Since for the derivation of (13) we used both the Verlinde formula (13b) and the (abstract) quantum-Racah formula this name might be a little bit misleading. We could equally well call (13) the “elementary Verlinde formula”

13 note that if Assumption 2 below is not fulfilled then possibly \(Y^+_g = Y^-_g\), so in this case there is actually only one such face

14 this coincides with the definition in [52] up to an overall normalization factor which will be irrelevant for our purposes
where

\[|X_L|_1^2 = \prod_Y (\dim(\varphi(Y)))^{X(Y)} \]
(17)

\[|X_L|_2^2 = \prod_Y (v_{\varphi(Y)})^{\ell(Y)} \]
(18)

\[|X_L|_3^2 = \prod_{g \in E(L)} N_{\varphi(Y^+)}^{\varphi(Y^-)} \) \]
(19)

where \(N^j_{yl}\) and \(\dim(\cdot)\) are as in Subsec. 2.2, where \(co(g)\) denotes the color associated to the edge \(g\) (i.e. \(co(g) = \gamma_i\) where \(i \leq n\) is given by \(arc(l_j^\Sigma) \supset g\)) and where we have set \(v_\lambda = T_{\lambda\lambda}\) (here \(T\) is, of course, the \(T\)-matrix from Subsec. 2.2).

\(|X_L|_4^2\) is defined in terms of quantum 6j-symbols associated to \(U_q(\mathfrak{g}_C)\), cf. Chap. X, Sec. 1.2 and Chap. XI, Sec. 6.3 in [52]. In view of Assumption 1 below and the consequences that this assumption has, cf. Eq. (22) below, the precise definition of \(|X_L|_4^2\) in the general case will not be relevant in the present paper.

For the rest of this paper, we will restrict ourselves to the special situation where \(L\) also fulfills the following two assumptions.

Assumption 1 The colored link \(L\) has no double points, i.e. the projected loops \(l_1^\Sigma, l_2^\Sigma, \ldots, l_n^\Sigma\) are non-intersecting Jordan loops in \(\Sigma\).

Assumption 2 Each \(l_j^\Sigma\) is 0-homologous.

Assumptions 1 and 2 have the following consequences:

- For each \(j \leq n\) the set \(\Sigma \setminus \text{arc}(l_j^\Sigma)\) has exactly two connected components. In the sequel \(R_j^+\) (resp. \(R_j^-\)) will denote the connected component “to the left” (resp. “to the right”) of \(l_j^\Sigma\), i.e. \(R_j^+\) (resp. \(R_j^-\)) is the unique connected component containing \(Y_j^+\) (resp. \(Y_j^-\)) where we have set

\[Y_j^\pm := Y_{g_j^\pm} \]
(20)

(i.e. \(Y_j^\pm = Y_g^\pm\) where \(g = l_j^\Sigma\)).

- \(\mu = n\), i.e. \(\Sigma \setminus (\bigcup_j \text{arc}(l_j^\Sigma))\) has \(n + 1\) connected components \(Y_0, Y_1, \ldots, Y_n\)

- For each \(Y \in \{Y_0, Y_1, Y_2, \ldots, Y_n\}\) we have

\[gl(Y) = \sum_{j \text{ with } \text{arc}(l_j^\Sigma) \subseteq \partial Y} \text{wind}(l_j^\Sigma) \cdot \text{sgn}(Y; l_j^\Sigma) \]
(21)

where \(\text{wind}(l_j^\Sigma)\) is the winding number of the loop \(l_j^\Sigma\), and where \(\text{sgn}(Y; l_j^\Sigma)\) is given by

\[\text{sgn}(Y; l_j^\Sigma) := \begin{cases} 1 & \text{if } Y \subseteq R_j^+ \\ -1 & \text{if } Y \subseteq R_j^- \end{cases} \]
According to the general definition of the shadow invariant in Chap. X, Sec. 1.2 in [52]. Assumption 1 implies \(|X_L|^2 = 1\) so Eq. 16 reduces to

\[
|X_L| = \sum_{\varphi \in \text{col}(X_L)} |X_L|^1 |X_L|^2 |X_L|^3
\]

Remark 2 1. The “shadow invariant” defined in [52] is more general than what we have defined here above. Our definition is the special case of Turaev’s shadow invariant where the underlying modular tensor category is the one coming from the representation theory of the quantum groups \(U_q(\mathfrak{g}_C)\), cf. Sec. 2.2 above.

2. In the special case \(G = SU(2)\) one has \(N_{ijk}^j \in \{0, 1\}\) for all \(i, j, k \in \Lambda^k_+\) so \(|X_L|^3 = 1\) for each \(\varphi \in \text{col}(X_L)\). Let us call \(\varphi \in \text{col}(X_L)\) “admissible” iff \(|X_L|^3 = 1\) and set \(\text{col}_{\text{adm}}(X_L) := \{ \varphi \in \text{col}(X_L) | \varphi \text{ admissible} \}\). Then we can rewrite Eq. 16 in the form

\[
|X_L| := \sum_{\varphi \in \text{col}_{\text{adm}}(X_L)} |X_L|^1 |X_L|^2 |X_L|^3
\]

If one compares this formula with Eqs. (5.7) and (5.8) in [53] (and the two equations before Theorem 6.1 in [53]) it is easy to see that the “shadow invariant” that was defined in [53] (and used in [33]) is the special case of the shadow invariant in the present paper which one obtains by taking \(G = SU(2)\).

3.2 Some examples

Example 1 Let \(\Sigma = S^2\) and let \(L = (i_1, i_2, i_3, (\lambda, \mu, \nu))\) be a colored link in \(\Sigma \times S^1\) such that \(\text{wind}(i_{\lambda_1}) = 1\) for all \(i \in \{1, 2, 3\}\) and such that the projection of \(L\) onto the surface \(\Sigma\) looks like in the following figure. Let, for \(i \in \{1, 2, 3\}\), \(Y_i\) denote the face “enclosed” by \(i_{\lambda_1}\) and let \(Y_0\) denote the remaining face. Clearly, we have \(\chi(Y_i) = 1\) for \(i \in \{1, 2, 3\}\) and \(\chi(Y_0) = 2 - 2g - 3 = -1\) and \(\text{gl}(Y_i) = 1\) for \(i \in \{1, 2, 3\}\) and \(\text{gl}(Y_0) = -3\). So we obtain

\[
|X_L| = \sum_{\sigma_1, \sigma_2, \sigma_3 \in \Lambda^k_+} \dim(\sigma_1) \dim(\sigma_2) \dim(\sigma_3) (\dim(\sigma_0))^{-1} N_{\sigma_\lambda}^\sigma_\lambda N_{\sigma_\mu}^\sigma_\mu N_{\sigma_\nu}^\sigma_\nu T_{\sigma_1, \sigma_2, \sigma_3} T_{\sigma_0}^{-3}
\]

\[
= \frac{T_{\ast \mu \nu} T_{\nu \ast}}{T_{00} S_{00}} N_{\lambda \mu \nu}.
\]

In deriving the last line, we used the following equation three times

\[
\sum_{\lambda \in \Lambda^k_+} \dim(\lambda) T_{\lambda \lambda} N_{\mu \lambda}^\nu = \frac{1}{T_{00} S_{00}} (TST)_{\mu \nu}
\]

(Eq. 25 follows from 19 and 11).
Then we have χY where the faces wind(m faces of the $\text{wind}()$ loops from it) is Y_0 and encircles the faces n loops. The face “inside” this loop (subtracting the (closure of the) projection of $\text{wind}(l_{i+1}) = 1$ for all $i = 1, 2, 3$ and such that the projection of L onto the surface Σ looks like in Fig. 3. Then we have $\chi(Y_1) = \chi(Y_3) = 1, \chi(Y_0) = \chi(Y_2) = 0$ and $\text{gl}(Y_1) = \text{gl}(Y_3) = 1, \text{gl}(Y_0) = -2, \text{gl}(Y_2) = 0$ where the faces Y_0, Y_1, Y_2, Y_3 are given as in Fig. 3. One obtains

$$|X_L| = \sum_{\sigma_1, \sigma_2, \sigma_3 \in \Lambda^g} \text{dim}(\sigma_1) \text{dim}(\sigma_3) N_{\sigma_1}^{\sigma_2} N_{\lambda \sigma_2}^{\sigma_0} T_{\sigma_1 \sigma_2} T_{\sigma_3 \sigma_0}^{-2}.$$

The sums over σ_1 and σ_3 can be performed right away using twice Eq. (25). We get

$$|X_L| = \frac{T_{\mu \nu} T_{\nu \sigma}}{T_{00}^2 S_{00}} \sum_{\sigma_2 \sigma_0} T_{\sigma_2 \sigma_0} T_{\sigma_0 \sigma_0}^{-1} S_{\nu \sigma_2} S_{\mu \sigma_0} N_{\lambda \sigma_2}^{\sigma_0}.$$

Now observe that

$$\sum_{\sigma_2 \sigma_1} T_{\sigma_2 \sigma_0} T_{\sigma_0 \sigma_0}^{-1} S_{\nu \sigma_2} S_{\mu \sigma_0} N_{\lambda \sigma_2}^{\sigma_0} = \frac{1}{T_{\nu \nu}} \sum_{\sigma_2 \sigma_1} T_{\sigma_2 \sigma_1} T_{\sigma_1 \sigma_0}^{-1} S_{\mu \sigma_1} S_{\nu \sigma_0} S_{\lambda \sigma_1} S_{\mu \sigma_0}^{-1} S_{\nu \sigma_0}^{-1} = \frac{T_{\mu \nu}}{T_{\nu \nu}} N_{\lambda \mu \nu}.$$

Here step (*) follows from Eq. (11) and $STS = T^{-1} ST^{-1}$ (which in turn follows from Eq. (9)) and step (**) follows from Eq. (9) and $ST^{-1} S^{-1} = TST$. From Eqs. (27) and (28) we finally get

$$|X_L| = \frac{T_{\mu \nu}^2}{T_{00}^2 S_{00}} N_{\lambda \mu \nu}.$$

The next example generalizes the first two examples above.

Example 3 Let $\Sigma = S^2$ and let $L = (l_1, l_2, \ldots, l_{m+n+1})$ be a colored link in $\Sigma \times S^1$ consisting of $m+n+1$ loops with colors $\nu_1, \nu_2, \ldots, \nu_m, \lambda$, and $\mu_1, \mu_2, \ldots, \mu_n$ such that $\text{wind}(l_{i+1}) = 1$ for all $i = 1, 2, \ldots, m+n+1$ and such that the projection of L onto the surface Σ looks like in the following figure.

Let X_1, X_2, \ldots, X_m be the faces encircled by the first m loops with colors $\nu_1, \nu_2, \ldots, \nu_m$. Loop l_{m+1} has color λ and encircles the first m loops. The face “inside” this loop (subtracting the (closure of the) faces of the m loops from it) is X_0. “Outside” this group of loops are n more loops with colorings $\mu_1, \mu_2, \ldots, \mu_n$ encircling the faces Y_1, Y_2, \ldots, Y_n, respectively.
The Euler characters are as follows:

\[
\chi(Y_1) = \chi(Y_2) = \cdots = \chi(Y_n) = \chi(X_1) = \chi(X_2) = \chi(X_m) = 1 \quad (30a)
\]
\[
\chi(Y_0) = 1 - n \quad (30b)
\]
\[
\chi(X_0) = 1 - m \quad (30c)
\]

and the gleams:

\[
gl(X_1) = gl(X_2) = \cdots = gl(X_m) = gl(Y_1) = gl(Y_2) = \cdots = gl(Y_n) = 1, \quad (31a)
\]
\[
gl(Y_0) = -n - 1 \quad (31b)
\]
\[
gl(X_0) = -m + 1. \quad (31c)
\]

The value of \(|X_L|\) is obtained by summing over all possible colorings of the faces. Using the summation variables \(\sigma_0, \sigma_1, \ldots, \sigma_n, \tau_0, \tau_1, \ldots, \tau_m \in \Lambda^k_L\), we obtain

\[
|X_L| = \sum_{\sigma_0 \cdots \sigma_n, \tau_0 \cdots \tau_m} \dim \sigma_1 \dim \sigma_2 \cdots \dim \sigma_n \dim \tau_1 \cdots \dim \tau_m \left((\dim \sigma_0)^{1-n} (\dim \tau_0)^{1-m} \times \right.
\]

\[
\times N^\sigma_0_{\tau_0} N^\sigma_1_{\sigma_0} \cdots N^\sigma_n_{\sigma_0} N^\tau_0_{\sigma_0} N^\tau_1_{\tau_0} \cdots N^\tau_m_{\tau_0} N^\sigma_0_{\tau_0} \times T_{\sigma_1 \sigma_2} T_{\sigma_3 \sigma_4} \cdots T_{\sigma_n \sigma_0} T_{\sigma_0 \sigma_0} T_{\tau_1 \tau_2} \cdots T_{\tau_m \tau_0} T_{\tau_0 \tau_0}^{-1} \right)
\]

\[
(32)
\]

We use (25) to remove all of the fusion coefficients except one:

\[
\sum_{\lambda \in \Lambda^k_L} \dim \lambda T_{\lambda \lambda} N^\nu_{\lambda} = \frac{1}{T_{00}S_{00}} (TST)_{\mu \nu}
\]

therefore:

\[
|X_L| = \sum_{\sigma_0 \tau_0} (\dim \sigma_0)^{1-n} (\dim \tau_0)^{1-m} \times \frac{1}{(T_{00}S_{00})^{n+m}} \times (TST)_{\mu_0 \sigma_0} (TST)_{\mu_2 \sigma_0} \cdots (TST)_{\mu_m \sigma_0} (TST)_{\nu_1 \tau_0} (TST)_{\nu_2 \tau_0} \cdots (TST)_{\nu_m \tau_0} \times\]

\[
\times T_{\mu_1 \mu_2} T_{\mu_3 \mu_4} \cdots T_{\mu_{n+m} \nu_m} \times \sum_{\sigma_0 \tau_0} (\dim \sigma_0)^{1-n} (\dim \tau_0)^{1-m} \times \]

\[
\times N^\sigma_0_{\tau_0} T_{\sigma_1 \sigma_0} T_{\sigma_2 \sigma_0} \cdots T_{\sigma_n \sigma_0} T_{\sigma_0 \sigma_0} T_{\tau_1 \tau_0} \cdots T_{\tau_m \tau_0} \times \]

\[
(34)
\]

Collecting the common factors of \(T\) this equals:

\[
|X_L| = \frac{T_{\mu_1 \mu_2} \cdots T_{\mu_{n+m} \nu_m}}{(T_{00}S_{00})^{n+m} S_{00}^2} \times \sum_{\sigma_0 \tau_0} (\dim \sigma_0)^{1-n} (\dim \tau_0)^{1-m} \times \]

\[
\times T_{\sigma_0 \sigma_0} T_{\tau_0 \tau_0} S_{\sigma_1 \sigma_0} S_{\sigma_2 \sigma_0} \cdots S_{\sigma_{n+m} \sigma_0} S_{\nu_1 \tau_0} \cdots S_{\nu_m \tau_0} \times \]

\[
\]

By filling in the definition of the fusion coefficients and the “quantum dimensions” \(\dim(\lambda)\) we can rewrite this as

\[
|X_L| = \frac{T_{\mu_1 \mu_2} \cdots T_{\mu_{n+m} \nu_m}}{(T_{00}S_{00})^{n+m} S_{00}^2} \sum_{\sigma_0 \tau_0 \sigma} (S_{00})^{1-n} (S_{00})^{-m} \frac{S^{-1}_{\sigma_0 \sigma} S_{\tau_0 \sigma} S_{\lambda \sigma}}{S_{\sigma_0} S_{\tau_0}} \times \]

\[
\times T_{\sigma_0 \sigma_0} T_{\tau_0 \tau_0} S_{\sigma_1 \sigma_0} S_{\sigma_2 \sigma_0} \cdots S_{\sigma_{n+m} \sigma_0} S_{\nu_1 \tau_0} \cdots S_{\nu_m \tau_0} \times \]

\[
(35)
\]

For example, in the special case \(m = 2, n = 1\) we have

\[
|X_L| = \frac{T_{\mu_1 \mu_1} T_{\nu_1 \nu_1} T_{\nu_2 \nu_2}}{(T_{00}S_{00})^{2} S_{00}^{2}} \sum_{\sigma_0 \tau_0 \sigma} \frac{S^{-1}_{\sigma_0 \sigma} S_{\tau_0 \sigma} S_{\lambda \sigma}}{S_{\sigma_0} S_{\tau_0}} \frac{T_{\sigma_0 \sigma_0} T_{\tau_0 \tau_0} S_{\mu_1 \sigma_0} S_{\mu_1 \tau_0} S_{\nu_2 \tau_0}}{S_{\sigma_0} S_{\tau_0}} \times \]

\[
(37)
\]

which – using \(ST^{-1}S^{-1} = TST\) – can be reduced to:

\[
|X_L| = \frac{T_{\mu_1 \mu_1} T_{\nu_1 \nu_1} T_{\nu_2 \nu_2}}{(T_{00}S_{00})^{2} S_{00}^{2}} \sum_{\tau_0 \sigma} \frac{1}{S_{\tau_0 \sigma}} \frac{S_{\tau_0 \sigma} S_{\lambda \sigma} S_{\mu_1 \sigma} S_{\nu_1 \tau_0} S_{\nu_2 \tau_0} T_{\sigma_0 \sigma}}{S_{\lambda \sigma}} \times \]

\[
(38)
\]

Example 4 Note that \(X_L\) is also defined if \(L\) is the “empty” link \(\emptyset\). In this case one has

\[
|X_\emptyset| = \sum_{\lambda \in \Lambda^k_L} (\dim \lambda)^{2g-2} \times \]

\[
(39)
\]

where \(g\) is the genus of the surface \(\Sigma\).
4 State sums from the Chern-Simons path integral in the torus gauge

4.1 Chern-Simons models

Let \(M \) be an oriented compact 3-manifold and \(A \) the space of smooth \(g \)-valued 1-forms on \(M \). Without loss of generality we can assume that the group \(G \) fixed in Subsec. 2.1 above is a Lie subgroup of \(U(N) \), \(N \in \mathbb{N} \). The Lie algebra \(\mathfrak{g} \) of \(G \) can then be identified with the obvious Lie subalgebra of the Lie algebra \(\mathfrak{u}(N) \) of \(U(N) \).

The Chern-Simons action function \(S_{CS} \) associated to \(M, G, k \) (with \(k \) as in Subsec. 2.2) is given by

\[
S_{CS}(A) = \frac{k}{4\pi} \int_M \text{Tr}(A \wedge dA + \frac{2}{3} A \wedge A \wedge A), \quad A \in A
\]

with \(\text{Tr} := c \cdot \text{Tr}_{\text{Mat}(N,C)} \) where the normalization constant \(c \) is chosen\(^{15} \) such that\(^{16} \)

\[
(A, B) = -\frac{1}{8\pi^2} \text{Tr}(A \cdot B) \quad \forall A, B \in \mathfrak{g}
\]

holds, cf. e.g. \([40, 50]\) where the same normalization is used.

Example 5 If \(G = SU(N) \) then \(c = 1 \) so in this case \(\text{Tr} \) coincides with \(\text{Tr}_{\text{Mat}(N,C)} \).

From the definition of \(S_{CS} \) it is obvious that \(S_{CS} \) is invariant under (orientation-preserving) diffeomorphisms. Thus, at a heuristic level, we can expect that the heuristic integral (the “partition function”)

\[
Z(M) := \int \exp(iS_{CS}(A))DA
\]

is a topological invariant of the 3-manifold \(M \). Here \(DA \) denotes the informal “Lebesgue measure” on the space \(A \).

Similarly, we can expect that the mapping which maps every sufficiently “regular” colored link \(L = ((l_1, l_2, \ldots, l_n), (\gamma_1, \gamma_2, \ldots, \gamma_n)) \) in \(M \) to the heuristic integral (the “Wilson loop observable” associated to \(L \))

\[
\text{WLO}(L) := \frac{1}{Z(M)} \int \prod_i \text{Tr}_{\rho_i}(P \exp(\int_{l_i} A)) \exp(iS_{CS}(A))DA
\]

is a link invariant (or, rather, an invariant of colored links). Here we have set \(\rho_i := \rho_{\gamma_i}, i \leq n \) (cf. Subsec. 2.1), \(\text{Tr}_{\rho_i} \) is the trace in the representation \(\rho_i \), and \(P \exp(\int_{l_i} A) \) denotes the holonomy of \(A \) around the loop \(l_i \).

Let us now consider the special case \(M = \Sigma \times S^1 \) where \(\Sigma \) is a closed oriented surface. Due to the well-known “equivalence” of Witten’s invariants and the Reshetikhin/Turaev invariants (cf., e.g., \([57]\)) and the equivalence of the Reshetikhin/Turaev invariants with the shadow invariant (cf. Theorem 3.3 in Chap. X in \([52]\)) one can conclude that in this situation \(\text{WLO}(L) \) should coincide with \(|X_L| \) up to a multiplicative constant (independent of the link). The value of this constant can be determined by looking at the special case \(L = \emptyset \), i.e. where \(L \) is the “empty” link. As \(\text{WLO}(\emptyset) = 1 \) one can conclude that \(\text{WLO}(L) = \frac{1}{|X_L|} \cdot |X_L| \) should hold. One of the goals of this paper is to show this formula directly (for the special situation where the link \(L \) fulfills Assumptions 11 and 2 above) by applying a suitable gauge fixing procedure to the Chern-Simons path integral. This generalizes\(^{17} \) the treatment in \([33]\).

4.2 Torus gauge fixing applied to Chern-Simons models

In the present section and in Sec. 4.3 below we will give a short summary of those results from \([33]\) which will be relevant later. Our presentation will not be totally self-contained, so the reader will probably find it helpful to have a look at \([33]\) for more details.

During the rest of this paper we will set \(M := \Sigma \times S^1 \) where \(\Sigma \) is a closed oriented surface. Moreover, we will fix an arbitrary point \(\sigma_0 \in \Sigma \) and an arbitrary point \(t_0 \in S^1 \).

\(^{15}\text{Such a normalization is always possible because by assumption } g \text{ is simple so all } \text{Ad}-\text{invariant scalar products on } g \text{ are proportional to the Killing metric.}\)

\(^{16}\text{Here } \cdot \text{ is, of course, the standard multiplication in } \text{Mat}(N, C) \text{ and the wedge product } \wedge \text{ appearing in Eq. 40 is the one for } \text{Mat}(N, C)-\text{valued forms.}\)

\(^{17}\text{in } \Sigma \times S^1 \text{ only for the case where } G = SU(2) \text{ and where each } \gamma_i \text{ was the highest weight of the fundamental representation the full path integral was evaluated explicitly}\)

\(^{18}\text{in order to simplify the notation somewhat we will later restrict ourselves to the special case where } t_0 = i_{S^1}(0) = 1\)
By \(A_{\Sigma} \) (resp. \(A_{\Sigma,t} \)) we will denote the space of smooth \(g \)-valued (resp. \(t \)-valued) 1-forms on \(\Sigma \). \(\partial_{\nu} \) will denote the vector field on \(S^1 \) which is induced by the curve \(i_{\partial_{\nu}} : [0,1] \ni t \mapsto e^{2\pi i t} \in S^1 \subseteq \mathbb{C} \) and \(dt \) the 1-form on \(S^1 \) which is dual to \(\partial_{\nu} \). We can lift \(\partial_{\nu} \) and \(dt \) in the obvious way to a vector field resp. a 1-form on \(M \), which will also be denoted by \(\partial_{\nu} \) resp. \(dt \). Every \(A \in \mathcal{A} \) can be written uniquely in the form \(A = A^+ + A_0 dt \) with \(A^+ \in \mathcal{A}^+ \) and \(A_0 \in C^\infty(M, \mathfrak{g}) \) where \(A^+ \) is defined by

\[
A^+ := \{ A \in \mathcal{A} \mid A(\partial_{\nu}) = 0 \}
\]

We say that \(A \in \mathcal{A} \) is in the “\(T \)-torus gauge” if \(A \in \mathcal{A}^+ \cap \{ B dt \mid B \in C^\infty(\Sigma, t) \} \).

By computing the relevant Faddeev-Popov determinants\(^{[19]}\) one obtains\(^{[20]}\) for every gauge-invariant function \(\chi : \mathcal{A} \to \mathbb{C} \)

\[
\int_{\mathcal{A}} \chi(A) DA = \text{const.} \int_{C^\infty(\Sigma,t)} \left[\int_{A^+} \chi(A^+ + B dt) DA^+ \right] \det(1_{A^+} - \exp(\ad(B))_{|A^+}) DB
\]

where \(DA^+ \) denotes the (informal) “Lebesgue measure” on \(\mathcal{A}^+ \) and \(DB \) the (informal) “Lebesgue measure” on \(C^\infty(\Sigma,t) \).

In the special case where \(\chi(A) = \prod_i \text{Tr}_\rho (P \exp(\int_i A) \exp(iS_{CS}(A)))\) we then get

\[
\text{WLO}(L) \sim \int_{C^\infty(\Sigma,t)} \left[\int_{\mathcal{A}} \prod_i \text{Tr}_\rho (P \exp(\int_i A^+ + B dt)) \exp(iS_{CS}(A^+ + B dt)) DA^+ \right] \times \det(1_{A^+} - \exp(\ad(B))_{|A^+}) DB
\]

Here and in the sequel \(\sim \) equality up to a multiplicative constant independent of \(L \). Now

\[
S_{CS}(A^+ + B dt) = \frac{k}{2\pi} \int_M \left[\text{Tr}(A^+ \wedge dA^+) + 2 \text{Tr}(A^+ \wedge Bdt \wedge A^+) + 2 \text{Tr}(A^+ \wedge dB \wedge dt) \right]
\]

so \(S_{CS}(A^+ + B dt) \) is quadratic in \(A^+ \) for fixed \(B \), which means that the informal (complex) measure \(\exp(iS_{CS}(A^+ + B dt)) DA^+ \) appearing above is of “Gaussian type”. This increases the chances of making rigorous sense of the right-hand side of Eq. (44) considerably.

So far we have ignored the following two “subtleties”

1. When one tries to find a rigorous meaning for the informal measure resp. the corresponding integral functional in Eq. (44) above one encounters certain problems which can be solved by introducing a suitable decomposition\(^{[21]}\) \(A^+ = \hat{A}^+ \oplus A^+ \), which we will describe now:

Let us make the identification \(A^+ \cong C^\infty(S^1, \mathcal{A}_\Sigma) \) where \(C^\infty(S^1, \mathcal{A}_\Sigma) \) denotes the space of all “smooth” functions \(\alpha : S^1 \to \mathcal{A}_\Sigma \), i.e. all functions \(\alpha : S^1 \to \mathcal{A}_\Sigma \) with the property that every smooth vector field \(X \) on \(\Sigma \) the function \(\Sigma \times S^1 \ni (\sigma, t) \mapsto \alpha(t)(X_\sigma) \) is smooth.

The decomposition \(A^+ = \hat{A}^+ \oplus A^+ \) is defined by\(^{[22]}\)

\[
\hat{A}^+ := \{ A^+ \in C^\infty(S^1, \mathcal{A}_\Sigma) \mid \pi_{\mathcal{A}_{\Sigma,t}}(A^+(t_0)) = 0 \},
\]

\[
A^+ := \{ A^+ \in C^\infty(S^1, \mathcal{A}_\Sigma) \mid A^+ \text{ is constant and } \mathcal{A}_{\Sigma,t}-\text{valued} \}
\]

where \(\pi_{\mathcal{A}_{\Sigma,t}} : \mathcal{A}_{\Sigma} \to \mathcal{A}_{\Sigma,t} \) is the projection onto the first component in the decomposition \(\mathcal{A}_{\Sigma} = \mathcal{A}_{\Sigma,t} \oplus \mathcal{A}_{\Sigma,t} \). It turns out that \(S_{CS} \) behaves nicely under this decomposition. More precisely, we have

\[
S_{CS}(\hat{A}^+ + A^+ \wedge B dt) = S_{CS}(\hat{A}^+ + B dt) + \frac{k}{2\pi} \int_{\Sigma} \text{Tr}(dA^+ \cdot B)
\]
Using this and setting $d\mu_B^\perp(\hat{A}^\perp) := \frac{1}{Z(B)} \exp(iS_{CS}(\hat{A}^\perp + Bdt))D\hat{A}^\perp$ where $\hat{Z}(B) := \int \exp(iS_{CS}(\hat{A}^\perp + Bdt))D\hat{A}^\perp$ we obtain

$$WLO(L) \sim \int_{C^\infty(\Sigma, t)} \frac{d\lambda}{2\pi} \int_{\tilde{A}_c^\perp} \left[\int_{\hat{A}^\perp} \prod_i \text{Tr}_{i}\left(\mathcal{P} \exp\left(\int_i \left(\hat{A}^\perp + A_c^\perp + Bdt \right) \right) \right) d\mu_B^\perp(\hat{A}^\perp) \right]$$

$$\times \exp\left(i\frac{k}{\pi} \int_\Sigma \text{Tr}(dA_c^\perp \cdot B)DA_c^\perp \det(1_{1+} - \exp(\text{ad}(B)_{1+}))\hat{Z}(B) \right) DB \quad (48)$$

A more careful analysis shows that in the formula above one can replace t by t_{reg} or, alternatively, by the Weyl above P. This amounts to including the extra factor $1_{C^\infty(\Sigma_{t=\theta})}$ or $1_{C^\infty(\Sigma,P)}$ in the integral expression above. In the sequel we will use the factor $1_{C^\infty(\Sigma,P)}$.

2. If one studies the torus gauge fixing procedure more closely for compact Σ one finds that – due to certain topological obstructions (cf. [14, 32, 33]) – in general a 1-form A can be gauge-transformed into a 1-form of the type $A^\perp + Bdt$ only if one uses a gauge transformation Ω which has a certain (mild) singularity and if one allows A^\perp to have a similar singularity. Concretely, in [32, 33] we worked with gauge transformations Ω of the type $\Omega = \Omega_{\text{smooth}} \cdot \Omega_{\text{sing}}(h) \in C^\infty((\Sigma \{ \sigma_0 \}) \times S^1, G)$ with $\Omega_{\text{smooth}} \in C^\infty(\Sigma \times S^1, G)$ and $\Omega_{\text{sing}}(h) \in C^\infty(\Sigma \{ \sigma_0 \}, G) \subset C^\infty((\Sigma \{ \sigma_0 \}) \times S^1, G)$ where $\sigma_0 \in \Sigma$ is the point fixed above and where the parameter h is an element of $[\Sigma, G/T]$, i.e. a homotopy class of mappings from Σ to G/T. $\Omega_{\text{sing}}(h)$ is obtained from h by fixing a representative $\tilde{g}(h) \in C^\infty(\Sigma, G/T)$ of h and then lifting the restriction $\tilde{g}(h)|_{\Sigma \{ \sigma_0 \}} : \Sigma \{ \sigma_0 \} \to G/T$ to a mapping $\Sigma \{ \sigma_0 \} \to G$. In other words: $\Omega_{\text{sing}}(h) \in C^\infty(\Sigma \{ \sigma_0 \}, G)$ is a fixed mapping with the property that $\pi_{G/T} \circ \Omega_{\text{sing}}(h) = \tilde{g}(h)|_{\Sigma \{ \sigma_0 \}}$ where $\pi_{G/T} : G \to G/T$ is the canonical projection.

The use of the singular gauge transformations $\Omega_{\text{sing}}(h)$ gives rise to an extra summation $\sum_{h \in [\Sigma, G/T]}$ and to extra terms $A_c^\perp(\sigma_0) := \pi_t(\Omega_{\text{sing}}(h)^{-1} \cdot d\Omega_{\text{sing}}(h))$, i.e. in Eq. (48) above we have to include a summation $\sum_{h \in [\Sigma, G/T]}$ and we have to replace A_c^\perp by $A_c^\perp + A_c^\perp(\sigma_0)$ (for a detailed description and justification of all this, see [32, 33]).

Taking into account these two subtleties we obtain

$$WLO(L) \sim$$

$$\sum_{h \in [\Sigma, G/T]} \int_{\tilde{A}_c^\perp \times C^\infty(\Sigma,t)} \frac{1}{2\pi} \int_{\tilde{A}_c^\perp} \left[\int_{\hat{A}^\perp} \prod_i \text{Tr}_{i}\left(\mathcal{P} \exp\left(\int_i \left(\hat{A}^\perp + A_c^\perp + A_c^\perp(\sigma_0) + Bdt \right) \right) \right) d\mu_B^\perp(\hat{A}^\perp) \right]$$

$$\times \left\{ \exp\left(i\frac{k}{\pi} \int_\Sigma \text{Tr}(dA_c^\perp \cdot B) \right) \text{det}(1_{1+} - \exp(\text{ad}(B)_{1+}))\hat{Z}(B) \right\}$$

$$\times \exp\left(i\frac{k}{\pi} \int_\Sigma \text{Tr}(dA_c^\perp \cdot B)(DA_c^\perp \otimes DB) \right) \quad (49)$$

where

$$\int_\Sigma \text{Tr}(dA_c^\perp(\sigma_0) \cdot B) := \lim_{\epsilon \to 0} \int_{\Sigma \setminus B_\epsilon(\sigma_0)} \text{Tr}(dA_c^\perp(h) \cdot B)$$

Here $B_\epsilon(\sigma_0)$ is the closed ϵ-ball around σ_0 with respect to an arbitrary but fixed Riemannian metric on Σ.

Remark 3 The mapping $n : [\Sigma, G/T] \to t$ given by $n(h) = \lim_{\epsilon \to 0} \int_{\Sigma \setminus B_\epsilon(\sigma_0)} dA_c^\perp(\sigma_0)$ is independent of the special choice of $\tilde{g}(h)$ and $\Omega_{\text{sing}}(h)$, cf. [32, 33]. Moreover, and this will be important in Subsec. 4.4 below one can show that n is a bijection from $[\Sigma, G/T]$ onto $I = \ker(\exp_k)$ (cf. also [14] for a similar result).

4.3 Some comments regarding a rigorous realization of the r.h.s. of Eq. (49)

In [33, 34] it is explained how one can make rigorous sense of the path integral expression appearing on the right-hand side of Eq. (49) using results/constructions from White Noise Analysis (cf., e.g., [32]), certain regularization techniques like “loop smearing” and “framing”, and a suitable regularization of the expression $\det(1_{1+} - \exp(\text{ad}(B)_{1+}))\hat{Z}(B)$ appearing above. We do not want to repeat the discussion in [33, 34] in the present paper. Let us just remark the following:
1. In view of the results [12] it is clear how to make sense of the factor $\det(1_{t^+} - \exp(\text{ad}(B)|_{t^+}))\hat{A}(B)$ appearing Eq. (19) in the special case where B is a constant function (this was the only case which was relevant in [12]). More precisely, using the same ζ-function regularization as the one described in Sec. 6 in [12] one comes to the conclusion that in this special case of constant $B \equiv b$ the expression $\det(1_{t^+} - \exp(\text{ad}(B)|_{t^+}))\hat{A}(B)$ should be replaced by $\det_\text{reg}(1_{t^+} - \exp(\text{ad}(b)|_{t^+}))^{\chi(\Sigma)/2}$

$$\exp(i\frac{c}{2\pi} \int_\Sigma \text{Tr}(dA_c \cdot B)) \times \det_\text{reg}(1_{t^+} - \exp(\text{ad}(B)|_{t^+}))$$

where

$$\det_\text{reg}(1_{t^+} - \exp(\text{ad}(B)|_{t^+})) := \det(1_{t^+} - \exp(\text{ad}(b)|_{t^+}))^{\chi(\Sigma)/2}$$

In [33] it was suggested that in the more general situation where B is a step function of the form $B = \sum_{l=0}^\mu b_l Y_l$ one should again replace $\det(1_{t^+} - \exp(\text{ad}(B)|_{t^+}))\hat{A}(B)$ by expression (50) where now

$$\det_\text{reg}(1_{t^+} - \exp(\text{ad}(b_l)|_{t^+})) := \prod_{l=0}^\mu \det(1_{t^+} - \exp(\text{ad}(b_l)|_{t^+}))^{\chi(Y_l)/2}$$

Moreover, it was suggested that one should include a $\exp(i\frac{c}{2\pi} \int_\Sigma \text{Tr}(dA_c^{\text{sing}}(h) \cdot B))$-factor in the expression (50) above. Incorporating these changes into (19) one obtains

$$\text{WLO}(L) \sim \sum_{h \in [\Sigma, G/T]} \int_{A_c^+ \times C^\infty(\Sigma, t)} 1_{C^\infty(\Sigma, P)}(B) \left[\int_{A_c^+} \prod_i \text{Tr}_{\hat{B}_i} (P \exp(\int_{t_i} (\hat{A}^+ + A_c^+ + A_c^{\text{sing}}(h) + Bdt))) d\mu_B(\hat{A}^+) \right]$$

$$\times \left\{ \exp(i\frac{c}{2\pi} \int_\Sigma \text{Tr}(dA_c^{\text{sing}}(h) \cdot B)) \det_\text{reg}(1_{t^+} - \exp(\text{ad}(b_l)|_{t^+})) \right\} d\nu((A_c^+, B))$$

where we have introduced the heuristic complex measure $d\nu$ given by

$$d\nu((A_c^+, B)) := \exp(i\frac{c}{2\pi} \int_\Sigma \text{Tr}(dA_c^+ \cdot B)) (DA_c^+ \otimes DB)$$

2. The “Gauss type” integral functionals $\int_{A_c^+} \cdots d\mu_B(\hat{A}^+)$ resp. $\int_{A_c^+ \times C^\infty(\Sigma, t)} \cdots d\nu((A_c^+, B))$ appearing above can be realized rigorously as Hida distributions Φ_B^\perp resp. $\Phi_{A_c^+ \times C^\infty(\Sigma, t)}$ on suitable extensions of the spaces \hat{A}^+ and $A_c^+ \times C^\infty(\Sigma, t)$. Moreover, also the space $C^\infty(\Sigma, P)$ appearing in the indicator function $1_{C^\infty(\Sigma, P)}$ must be replaced by a larger space. (The fact that one has to extend the original spaces of smooth functions by larger spaces consisting of less regular functions is a usual phenomenon in Constructive Quantum Field Theory.) The details regarding the extensions of the spaces \hat{A}^+ and $A_c^+ \times C^\infty(\Sigma, t)$ have been or will be discussed elsewhere [24] and they are not relevant if one is only interested in a heuristic evaluation of the r.h.s of Eq. (19) resp. (52). By contrast, the question of how to extend the space $C^\infty(\Sigma, P)$ appearing in the indicator function $1_{C^\infty(\Sigma, P)}$ is more subtle even if one is only interested in a heuristic treatment. One might think that if one replaces $C^\infty(\Sigma, P)$ by the space P_Σ of all P-valued functions on Σ this should be enough. In fact that was the ansatz used in [33] and in the special case where all the link colors γ_i are (minimal) fundamental weights this ansatz works. However, it turns out that in the case of general link colors γ_i the space P_Σ is too small. In order to find the “correct” space note that $1_{C^\infty(\Sigma, P)}(B) = 1_{C^\infty(\Sigma, t_{\text{reg}})}(B)1_P(B(\sigma_0))$. This suggests that one might replace $C^\infty(\Sigma, t_{\text{reg}})$ by $(t_{\text{reg}})^\Sigma$. As the computations in the next subsections show the second ansatz is the “correct” one. Of course, it would be desirable to find a thorough justification for using the second ansatz which is independent of the result of this paper.

23 the first factor in Eq. (20) gives rise to the so-called “charge shift” $k \to k + c\alpha$. Let us mention that the claim that such a charge shift appears is contested by some authors, cf. Remark B.2 in [32]. If one does not believe that such a charge shift will appear one will have to omit the first factor in Eq. (20) and the analogous terms in the equations below

24 the extension of \hat{A}^+ is described in Sec. 8 in [31], see also Sec. 4 in [33]; the extension of $A_c^+ \times C^\infty(\Sigma, t)$ was described in [34]
3. For the implementation of the “framing procedure” in [33, 34] a suitable family \((\phi_s)_{s>0}\) of diffeomorphisms of \(\Sigma \times S^1\) fulfilling certain condition (see list below) was fixed. For each diffeomorphism \(\phi_s\) a “deformation” \(\Phi_{B,\phi_s}\) resp. \(\Psi_{B,\phi_s}\) was then introduced and used to replace \(\Phi_{B}^1\) and \(\Psi\) in the original formula. Later the free parameter \(s > 0\) in the resulting formulas was eliminated by taking the limit \(s \to 0\).

Among others \((\phi_s)_{s>0}\) was assumed to fulfill the following conditions

- \(\phi_s \to \text{id}_M\) as \(s \to 0\) uniformly w.r.t. to an arbitrary Riemannian metric on \(M\).
- \((\phi_s)^*A^1 = A^1\) for all \(s > 0\). This condition implies that each \(\phi_s\), \(s > 0\), is of the form
 \[
 \phi_s(\sigma, t) = (\hat{\phi}_s(\sigma), v_s(\sigma, t)) \quad \forall (\sigma, t) \in \Sigma \times S^1
 \]
 for a uniquely determined diffeomorphism \(\hat{\phi}_s : \Sigma \to \Sigma\) and \(v_s \in C^\infty(\Sigma \times S^1, S^1)\).
- \((\phi_s)_{s>0}\) is “horizontal” in the sense that it can be obtained by integrating a smooth vector field \(X\) on \(\Sigma \times S^1\), which for all \(i \leq n\), \(u \in [0, 1]\) is orthogonal to the tangent vector \(l_i(u)\) (i.e. \(X(l_i(u)) \perp l_i(u)\)) and, at the same time, horizontal in \(l_i(u)\) (i.e. \(dt(X(l_i(u))) = 0\)).

4.4 Explicit heuristic evaluation of the WLOs

As mentioned above we will not go into details concerning a rigorous realization of the r.h.s. of (50) but give a short heuristic treatment instead. As the starting point for this heuristic treatment we use the following modification\(^{26}\) of Eq. (52) above.

\[
WLO(L) \sim \sum_h \int_{l_{v(s)}(B)} 1_{\text{reg}}(B) 1_{P}(B(\sigma_0)) \left[\prod_{i=1}^n \int_{A^1_i} \prod_{i} \text{Tr}_{i} \left(P \exp \left(\int_{l_{i}} (A^1_i + A^1_{m} + A^1_{c} \text{sing}(h)) + B dt \right) \right) d\mu^1_{B}(A^1) \right]
\]

\[
\times \left\{ \exp \left(\frac{i + c + 2 s}{2} \int_{\Sigma} \text{Tr} \left(dA^1_{\text{sing}}(h) \cdot B \right) \right) \text{det}_{\text{reg}}(1 + \exp(ad(B)_{l_{i}})) \right\}
\]

\[
\times \exp \left(\frac{i + c + 2 s}{2} \int_{\Sigma} \text{Tr} \left(dA^1_{\text{reg}}(B) \right) d\mu^1_{B}(A^1) \right) DB (53)
\]

Let, for fixed \(j \leq n\), \(u_1, u_2, \ldots, u_n\) be the “solutions” of the equation \(l_{v(s)}(u) = t_0\), i.e. those curve parameters in which \(l_{v(s)}^j\) “hits” \(t_0\). For \(m \leq n^j\) we set \(\sigma_m := l_{v(s)}(m)\), and \(\sigma_m^j := 1\) resp. \(\sigma_m^j := -1\) resp. \(\sigma_m^j := 0\) if \(l_{v(s)}^j\) touches \(t_0\) in \(u_m\) “from below” resp. “from above” resp. only touches \(t_0\) in \(u_m\).

In [33] it is shown how one can evaluate (the rigorous realization of) the heuristic expression

\[
\int_{A^1} \prod_{i} \text{Tr}_{i} \left(P \exp \left(\int_{l_{i}} (A^1_i + A^1_{m} + A^1_{c} \text{sing}(h)) + B dt \right) \right) d\mu^1_{B}(A^1)
\]

explicitly (for links fulfilling Assumption 1 and 2) and that by doing so one obtains the expression

\[
\prod_{j=1}^n \text{Tr}_{j} \left(\exp \left(\int_{l_{j}} A^1_{c} \right) \exp \left(\int_{l_{j}} A^1_{c} \text{sing}(h) \right) \left(\sum_{m=1}^{n^j} \sigma_m^j B(\sigma_m^j) \right) \right)
\]

By plugging the last expression into Eq. (53) we obtain

\[
WLO(L) \sim \sum_h \int_{l_{v(s)}(B)} 1_{\text{reg}}(B) 1_{P}(B(\sigma_0)) \left[\prod_{i=1}^n \int_{A^1_i} \prod_{i} \text{Tr}_{i} \left(\exp \left(\int_{l_{i}} A^1_{i} \right) \exp \left(\int_{l_{i}} A^1_{c} \text{sing}(h) \right) \left(\sum_{m=1}^{n^j} \sigma_m^j B(\sigma_m^j) \right) \right) \right]
\]

\[
\times \left\{ \exp \left(\frac{i + c + 2 s}{2} \int_{\Sigma} \text{Tr} \left(dA^1_{\text{sing}}(h) \cdot B \right) \right) \text{det}_{\text{reg}}(1 + \exp(ad(B)_{l_{i}})) \right\}
\]

\[
\times \exp \left(\frac{i + c + 2 s}{2} \int_{\Sigma} \text{Tr} \left(dA^1_{\text{reg}}(B) \right) d\mu^1_{B}(A^1) \right) DB (54)
\]

\(^{26}\)In fact the definition of the term “horizontal” in [33] was somewhat broader but also more complicated.

\(^{25}\)Clearly, the modification consists in replacing the integration \(\cdots\) by the two separate integrations \(\cdots\) and \(\sum_{m=1}^{n} \cdots\) and in the use of \(1_{\text{reg}}(B)\) instead of \(1_{C^\infty(\Sigma, P)}(B) = 1_{C^\infty(\Sigma, l_{v(s)})(B)} 1_{P}(B(\sigma_0))\).
Let us now fix an auxiliary Riemannian metric g on Σ for the rest of this paper. Let μ_g denote the corresponding volume measure on Σ and \ast the Hodge star operator induced by g. Moreover, let $L^2_1(\Sigma, d\mu_g)$ denote obvious\footnote{The inner product $\llcdot, \cdot\gg_{L^2_1(\Sigma, d\mu_g)}$ is given by $\ll B_1, B_2 \gg_{L^2_1(\Sigma, d\mu_g)} = \int_{\Sigma} (B_1(\sigma), B_2(\sigma)) d\mu_g(\sigma)$ where (\cdot, \cdot) is the inner product on $\mathfrak{g} \ni \mathfrak{t}$ fixed above.} L^2-space. Then we have (cf. Eq. (10))

$$\int_{\Sigma} \text{Tr}(dA^\perp_c \cdot B) = \int_{\Sigma} \text{Tr}(\ast dA^\perp_c \cdot B) d\mu_g = -4\pi^2 \ll \ast dA^\perp_c, B \gg_{L^2_1(\Sigma, d\mu_g)}$$

From Stokes' Theorem we obtain

$$\int_{R^+_j} A^\perp_c = \int_{R^+_j} dA^\perp_c = \int_{R^+_j} \ast dA^\perp_c d\mu_g = \int \ast dA^\perp_c \cdot 1_{R^+_j} d\mu_g$$

which implies

$$(\alpha, \int_{R^+_j} A^\perp_c) = \ll \ast dA^\perp_c, \alpha \cdot 1_{R^+_j} \gg_{L^2_1(\Sigma, d\mu_g)} \quad (55)$$

for every $\alpha \in \mathfrak{t}$. Here $1_{R^+_j}$ denotes the indicator function of the region R^+_j defined in Subsec. 3.1 above. Note that Eq. (55) also holds if we replace $1_{R^+_j}$ by

$$1^{\text{shift}}_{R^+_j} := 1_{R^+_j} - 1_{R^+_j}(\sigma_0) \quad (56)$$

We will use this modified version of Eq. (55) in the sequel. Finally, we take into account that

$$\text{Tr}_{\varrho_j}(\exp(b)) = \chi_{\varrho_j}(\exp(b)) = \sum_{\alpha \in \Lambda} m_{\gamma_j}(\alpha)e^{2\pi i(\alpha, b)} \quad \forall b \in \mathfrak{t} \quad (57)$$

for suitable\footnote{$m_{\gamma_j}(\alpha)$ is just the multiplicity of the weight α in the character χ_{ϱ_j}} $m_{\gamma_j}(\alpha) \in \mathbb{N}_0$, cf. Eq. (2) above. Setting

$$\tilde{\alpha} := 2\pi \alpha, \quad \tilde{\gamma} := 2\pi \gamma$$

for each $\alpha \in \Lambda$ we obtain from Eq. (57) and the modified version of Eq. (55)

$$\text{Tr}_{\varrho_j}\left[\exp\left(\int_{R^+_j} A^\perp_c \right) \exp\left(\int_{R^+_j} A^\perp_{\text{sing}}(h) \right) \exp\left(\sum_m \epsilon^j_m B(\sigma^j_m) \right)\right]$$

$$= \sum_{\alpha \in \Lambda} m_{\gamma_j}(\alpha) \exp(i(\tilde{\alpha}, \sum_m \epsilon^j_m B(\sigma^j_m))) \exp(i\int_{R^+_j} (\tilde{\alpha}, A^\perp_{\text{sing}}(h))) \exp(i \ll \ast dA^\perp_c, \tilde{\alpha} \cdot 1^{\text{shift}}_{R^+_j} \gg_{L^2_1(\Sigma, d\mu_g)} \) \quad (58)$$

(Here $(\tilde{\alpha}, A^\perp_{\text{sing}}(h))$ denotes the obvious real-valued 1-form). Plugging this into Eq. (54) above we get

WLO(L)

$$\sim \sum_h \sum_{\alpha} \int_{(1,1)} \ll B(1_{P}(B(\sigma_0)) \prod_{A_\perp} \sum_{\alpha_j \in \Lambda} m_{\gamma_j}(\alpha_j) \exp(i \int_{R^+_j} (\tilde{\alpha}_j, A^\perp_{\text{sing}}(h))) \exp(i \ll \ast dA^\perp_c, \tilde{\alpha}_j \cdot 1^{\text{shift}}_{R^+_j} \gg_{L^2_1(\Sigma, d\mu_g)} \) \times \exp(i(\tilde{\alpha}_j, \sum_m \epsilon^j_m B(\sigma^j_m))) \det_{\text{reg}}(1_{L^+_j} - \exp(ad(B)|_{L^+_j})) \exp(i \frac{h + c_B}{2\pi} \int_{\Sigma} \text{Tr}(dA^\perp_{\text{sing}}(h) \cdot B))$$

$$\times \exp(-2\pi i(k + c_B)) \ll \ast dA^\perp_c, B \gg_{L^2_1(\Sigma, d\mu_g)} DA^\perp_c DB$$

$$= \sum_{\alpha} \sum_{\alpha_1, \ldots, \alpha_n \in \Lambda} \left(\prod_{j=1}^n m_{\gamma_j}(\alpha_j) \right) \ll B(1_{P}(B(\sigma_0)) \prod_{j=1}^n \exp(i \int_{R^+_j} (\tilde{\alpha}_j, A^\perp_{\text{sing}}(h))) \exp(i(\tilde{\alpha}_j, \sum_m \epsilon^j_m B(\sigma^j_m))) \times \det_{\text{reg}}(1_{L^+_j} - \exp(ad(B)|_{L^+_j})) \exp(i \frac{h + c_B}{2\pi} \int_{\Sigma} \text{Tr}(dA^\perp_{\text{sing}}(h) \cdot B))$$

$$\times \left[\int_{A^\perp_j} \exp(i \ll \ast dA^\perp_c, \sum_j \tilde{\alpha}_j \cdot 1^{\text{shift}}_{R^+_j} - 2\pi(k + c_B) B \gg_{L^2_1(\Sigma, d\mu_g)} DA^\perp_c \right] DB$$

(Here D is the determinant of the connection ∇ on \mathfrak{g}.)}
Here, in step (∗) we should rather use the "superposition" be a little bit more careful. Instead of using the delta-function $WLO(\cdots)$ we have used the informal equation

$$\int \exp(i \ll k_{+c_g}\sum_{j=1}^n \bar{\alpha}_j \cdot 1_{R_j^+}^{shift} - 2\pi(k + c_g)B) \sim \delta(d(\sum_{j=1}^n \bar{\alpha}_j \cdot 1_{R_j^+}^{shift} - 2\pi(k + c_g)B)) \tag{60}$$

which is a kind of infinite dimensional analogue of the well-known informal equation $\int_R \exp(i(x, y))dx \sim \delta(y)$. In fact, as $(\sum_{j=1}^n \bar{\alpha}_j \cdot 1_{R_j^+}^{shift} - 2\pi(k + c_g)B)$ is in general not smooth (not even continuous) we should be a little bit more careful. Instead of using the delta-function $\delta(d(\sum_{j=1}^n \bar{\alpha}_j \cdot 1_{R_j^+}^{shift} - 2\pi(k + c_g)B))$ in Eqs. (59) and (60) above we should rather use the “superposition”

$$\int \cdots \delta(B - (b + \frac{1}{2\pi(k + c_g)}\sum_{j=1}^n \bar{\alpha}_j \cdot 1_{R_j^+}^{shift})))db$$

of delta-functions. Then we obtain

WLO(L)

$$\sim \sum_{\lambda \in [\Sigma, G/T]} \sum_{\alpha_1, \alpha_2, \ldots, \alpha_n \in \Lambda} \left(\prod_{j=1}^n m_{\gamma_j}(\alpha_j) \int \frac{d}{\Sigma} \left[\exp(i \frac{k + c_g}{2\pi} \int \sum_{j=1}^n \bar{\alpha}_j \cdot A_{sing}^+(h) \cdot b) \right] \right. \times \left. \delta(d(\sum_{j=1}^n \bar{\alpha}_j \cdot 1_{R_j^+}^{shift} - 2\pi(k + c_g)B)) \right) \tag{59}$$

$$= \sum_{\lambda \in [\Sigma, G/T]} \sum_{\alpha_1, \alpha_2, \ldots, \alpha_n \in \Lambda} \left(\prod_{j=1}^n m_{\gamma_j}(\alpha_j) \int \frac{d}{\Sigma} \left[\exp(i \frac{k_c + c_g}{2\pi} \int \sum_{j=1}^n \bar{\alpha}_j \cdot 1_{R_j^+}^{shift} - 2\pi(k + c_g)B) \right) \right.$$

$$= \sum_{\lambda \in [\Sigma, G/T]} \sum_{\alpha_1, \alpha_2, \ldots, \alpha_n \in \Lambda} \left(\prod_{j=1}^n m_{\gamma_j}(\alpha_j) \frac{1}{k + c_g} \left(1_{(t_{reg}) \Sigma}(B) \int \frac{d}{\Sigma} \left[\delta(d(\sum_{j=1}^n \bar{\alpha}_j \cdot 1_{R_j^+}^{shift} - 2\pi(k + c_g)B)) \right) \right) \right.$$

$$= \sum_{\lambda \in [\Sigma, G/T]} \sum_{\alpha_1, \alpha_2, \ldots, \alpha_n \in \Lambda} \left(\prod_{j=1}^n m_{\gamma_j}(\alpha_j) \frac{1}{k + c_g} \left(1_{(t_{reg}) \Sigma}(B) \int \frac{d}{\Sigma} \left[\delta(d(\sum_{j=1}^n \bar{\alpha}_j \cdot 1_{R_j^+}^{shift} - 2\pi(k + c_g)B)) \right) \right) \right.$$
In step (**) we have used the definition of $n(h)$ and Eq. (61). Moreover, we have used

$$\exp\left(\frac{i{k+c_8}}{2\pi} \int \text{tr}(dA_{\text{sing}}^\perp(h) \cdot \frac{1}{2\pi(k+c_8)} \sum_{j=1}^n \alpha_j \cdot 1_{\text{shift}}^{R_j^+})\right) = \exp\left(-i \sum_j \int \alpha_j \cdot A_{\text{sing}}^\perp(h)\right)$$

Step (***) follows, informally by interchanging $\sum_i \cdots$ and $\int_1 \cdots$ and then using

$$\sum_{x \in L} \exp(2\pi i (k + c_8)(x, b)) = \sum_{b'} \delta(b - b')$$

which is an informal version of the Poisson summation formula (moreover, one has to take into account Remark 3 and the relation $I^* = \Lambda$, cf. Remark 4).

The “framing” procedure mentioned above which has to be used for a rigorous treatment can also be “implemented” in the heuristic setting we work with in the present paper. This amounts to replacing (by hand) the expressions $B(\sigma_m^h)$ appearing above by $[B(\sigma_m^h) + B(\sigma_m^{-1})]$. Accordingly, one can expect that in the rigorous treatment where WLO(L) is defined and computed rigorously one has

$$\text{WLO}(L) = C_1 \cdot \text{St}_{\text{CS}}(L)$$

where C_1 is a suitable constant independent of L (see Eq. (63) below) and where $\text{St}_{\text{CS}}(L)$ is the rigorous finite state sum (called the “Chern-Simons state sum of L in horizontal framing” in the sequel) given by

$$\text{St}_{\text{CS}}(L) := \sum_{\alpha_1, \alpha_2, \ldots, \alpha_n \in \Lambda} \prod_{j=1}^n \alpha_j(\alpha_j) \left(1_{\text{reg}} \cdot (B) 1_p (B(\sigma_0)) \text{det}_{\text{reg}}(1_{\text{reg}} - \exp(\text{ad}(B))_{t^{\perp}}) \right) \times \prod_{j=1}^n \exp(2\pi i (\alpha_j, \sum_m \epsilon^j m \frac{1}{2} [B(\sigma_m^h) + B(\sigma_m^{-1})]) \right)_{|B=b, \frac{1}{k+c_8} \sum_j \alpha_j(1_{\text{shift}}^{R_j^+})}$$

where $s > 0$ is chosen small enough.

In the special case $n = 0$, i.e. the case where the link L is “empty”, it follows from the heuristic definition of WLO(L) that we must have WLO(L) = 1. From this and Eqs. (61), (62), and (51) we can therefore conclude

$$C_1 = \left(\sum_{b \in P} \frac{1}{k+c_8} \text{det}_{\text{reg}}(1_{\text{reg}} - \exp(\text{ad}(b))_{t^{\perp}})^{1-g}\right)^{-1}$$

where g is the genus of Σ. In Sec. 5 below we will give a somewhat more explicit expression for C_1.

5 Equivalence of the Chern-Simons state sums and those in the shadow invariant

Theorem 5.1 Let L be the colored link in $\Sigma \times S^1$ which we have fixed above. Then

$$\text{St}_{\text{CS}}(L) = K^{2-2g} |X_L|$$

where g is the genus of Σ and

$$K := \prod_{\beta \in \mathbb{R}_+} \left(2 \sin \left(\frac{\pi(\beta, \rho)}{k+c_8}\right)\right)$$

30 In a rigorous treatment where the Hida distributions Ψ_s, $s > 0$, are used instead of the heuristic integral functional $\int \cdots \frac{1}{2\pi} \int_E \text{tr}(dA_{\text{shift}}^\perp \cdot B)(dA_{\text{shift}}^\perp \otimes dB)$ a suitably regularized version of this linear combination $\frac{1}{2} [B(\sigma_m^h) + B(\sigma_m^{-1})] \right)$ appears naturally as a result of the application of the polarization identity for quadratic forms.

31 From Lemma (iiii) below it follows that the right-hand side of Eq. (64) as a function of s is stationary as $s \to 0$, so it is clear what “small enough” means. Moreover, Lemma (iiii) below shows that $\text{St}_{\text{CS}}(L)$ does not depend on the special choice of the horizontal framing $(\sigma_m)_{s > 0}$.

17
Before we prove Theorem 5.1 we will first introduce some notation and then state and prove two lemmas. The proof of Theorem 5.1 will be given after the proof of Lemma 2 below.

For each sequence $(\alpha_i)_{0 \leq i \leq n}$ of elements of Λ we set

$$B_{(\alpha_i)} := \frac{1}{k + c_g}(\alpha_0 + \sum_{j=1}^{n} \alpha_j \cdot 1^\text{shift}_{R_j^+}).$$

Then we can rewrite Eq. (62) as

$$St_{CS}(L) = \sum_{(\alpha_i) \in \Lambda^{n+1}} \prod_{j=1}^{n} m_j \alpha_j \prod_{i} \Phi_i(B_{(\alpha_i)}(\sigma_i)) \det_{\text{reg}}(1_{1^+} - \exp(\text{ad}(B_{(\alpha_i)}))) \prod_{i} \Phi_i(B_{(\alpha_i)}(\sigma_i)) \det_{\text{reg}}(1_{1^+} - \exp(\text{ad}(B_{(\alpha_i)}))$$

Each $B_{(\alpha_i)}$ gives rise to an “area coloring” $\varphi_{(\alpha_i)} : \{Y_0, Y_1, \ldots, Y_n\} \to \Lambda$ given by

$$\varphi_{(\alpha_i)}(Y_i) := (k + c_g)B_{(\alpha_i)}(\sigma_i) - \rho = \alpha_0 + \sum_{j=1}^{n} \alpha_j \cdot 1^\text{shift}_{R_j^+}(\sigma_i) - \rho$$

where σ_i is an arbitrary point of Y_i. Note that $\rho \in \Lambda$ so $\varphi_{(\alpha_i)}$ is well-defined.

Lemma 1 For each $(\alpha_i)_{0 \leq i \leq n} \in \Lambda^{n+1}$ we have

i) $\alpha_j = \varphi_{(\alpha_i)}(Y_j^+) - \varphi_{(\alpha_i)}(Y_j^-)$ for $1 \leq j \leq n$

ii) $\det_{\text{reg}}(1_{1^+} - \exp(\text{ad}(B_{(\alpha_i)}))) = K^{2-2g} \prod \text{dim}(\varphi_{(\alpha_i)}(Y)) \chi(Y)$

iii) $\prod_{j=1}^{n} \exp(2\pi i(\alpha_j \cdot \sum_{m} e^{i\frac{1}{2\pi}} \Phi_m(B_{(\alpha_i)}(\sigma_i)) + B_{(\alpha_i)}(\sigma_i))) = \prod \text{dim}(\varphi_{(\alpha_i)}(Y)) \chi(Y)$

Proof of i): By Assumption 4 the loops $l_{1^2}, l_{2^2}, \ldots, l_{n^2}$ do not intersect. This means that for each $j' \leq n$ with $j' \neq j$ the two faces Y_j^+ and Y_j^- are either both “inside” $l_{j'}$ or both “outside” $l_{j'}$. More precisely, we have either $Y_j^+, Y_j^- \subset R_{j'}^+$ or $Y_j^+, Y_j^- \subset R_{j'}^-$. From Eq. (67) we therefore obtain $\varphi_{(\alpha_i)}(Y_j^+) - \varphi_{(\alpha_i)}(Y_j^-) = \alpha_j \cdot 1^\text{shift}_{R_j^+}(\sigma_i) - \alpha_j \cdot 1^\text{shift}_{R_j^-}(\sigma_i) = \alpha_j \cdot (1 - 0) = \alpha_j$.

Proof of ii): For every $b \in \mathbb{T}$ we have

$$\det(1_{1^+} - \exp(\text{ad}(b))) = \prod_{\beta \in \mathbb{R}_+} (1 - e^{2\pi i \beta(b)})(1 - e^{-2\pi i \beta(b)}) = \prod_{\beta \in \mathbb{R}_+} [-e^{2\pi i \beta(b)/2} - e^{-2\pi i \beta(b)/2}]$$

$$= \prod_{\beta \in \mathbb{R}_+} [-e^{2\pi i (\beta, b)} - e^{-2\pi i (\beta, b)}] = \prod_{\beta \in \mathbb{R}_+} [-2i \sin(\pi (\beta, b))] = \prod_{\beta \in \mathbb{R}_+} 4 \sin(\pi (\beta, b))^2$$

Taking into account Eqs. (61), (67), and the relation $\sum Y \chi(Y) = \chi(\Sigma) = 2 - 2g$ we obtain

$$\det_{\text{reg}}(1_{1^+} - \exp(\text{ad}(B_{(\alpha_i)}))) = \prod_{i=0}^{n} \prod_{\beta \in \mathbb{R}_+} \left((2 \sin(\pi (\beta, B_{(\alpha_i)}(\sigma_i))))^2 \chi(Y_i)^2\right)$$

$$= \prod_{i=0}^{n} \prod_{\beta \in \mathbb{R}_+} \left(2 \sin(\pi (\beta, \varphi_{(\alpha_i)}(Y_i) + \rho)) \chi(Y_i) = \prod_{Y \in \mathbb{R}_+} \left(2 \sin(\frac{\pi (\beta, \varphi_{(\alpha_i)}(Y_i) + \rho)}{k + c_g}) \chi(Y_i) = K^{2-2g} \prod \text{dim}(\varphi_{(\alpha_i)}(Y)) \chi(Y) \right)$$

Proof of iii): Recall that the framing $(\phi_s)_{s > 0}$ was assumed to be horizontal. Thus, for fixed j and m, exactly one of the two points $\phi_s(\sigma_j^m)$ and $\phi_s^{-1}(\sigma_j^m)$ will lie in Y_j^+ and the other one in Y_j^- and we have for sufficiently small $s > 0$

$$B_{(\alpha_i)}(\phi_s(\sigma_j^m)) + B_{(\alpha_i)}(\phi_s^{-1}(\sigma_j^m)) = \frac{1}{k + c_g}(\varphi_{(\alpha_i)}(Y_j^+) + \varphi_{(\alpha_i)}(Y_j^-) + 2\rho)$$
Let us set
\[\epsilon_j := \sum_{m \leq n} \epsilon_m^j = \text{wind}(l^j_{21}) \] (71)

Then, taking into account part i) of the Lemma we get (for small \(s > 0 \))
\[
\prod_j \exp(2\pi i(\alpha_j, \sum_m \epsilon_m^j \frac{1}{2} [\tilde{B}(\alpha_i), (\tilde{\phi}_s(\sigma_m^j)) + B(\alpha_i), (\tilde{\phi}_s^{-1}(\sigma_m^j))])
\]
\[= \prod_j \exp(2\pi i(\sum_m \epsilon_m^j \frac{1}{2} k + c_g) (\varphi(\alpha_i), (Y^+_j) - \varphi(\alpha_i), (Y^-_j), \varphi(\alpha_i), (Y^+_j) + \varphi(\alpha_i), (Y^-_j) + 2\rho)
\]
\[= \prod_j \exp \left(\frac{\pi i}{k + c_g} \epsilon_j \left[(\varphi(\alpha_i), (Y^+_j), \varphi(\alpha_i), (Y^+_j) + 2\rho) - (\varphi(\alpha_i), (Y^-_j), \varphi(\alpha_i), (Y^-_j) + 2\rho) \right] \right)
\]
\[= \prod_j \exp \left(\frac{\pi i}{k + c_g} \epsilon_j \left[\text{sgn}(Y^+_j; l^j_\Sigma) C_2(\varphi(\alpha_i), (Y^+_j)) + \text{sgn}(Y^-_j; l^j_\Sigma) C_2(\varphi(\alpha_i), (Y^-_j)) \right] \right)
\]
\[\equiv \prod_Y \exp \left(\frac{\pi i}{k + c_g} \text{gl}(Y) \cdot C_2(\varphi(\alpha_i), (Y)) \right) = \left(\prod_Y (v_{\varphi(\alpha_i)}(Y))^{\text{gl}(Y)} \right) \cdot \left(\prod_Y e^{\frac{\pi i}{k + c_g} \text{gl}(Y)} \right)
\]

Here step (*) follows from Eq. (21) and Eq. (71). Moreover, also step (**) follows from Eq. (21) which clearly implies \(\sum_Y \text{gl}(Y) = 0. \)

Recall that \(\text{col}(X_L) \) denotes the set of mappings \(\{Y_0, Y_1, \ldots, Y_n\} \to \Lambda^k_+ \). In the sequel let \(\text{col}'(X_L) \) denote the set of mappings \(\{Y_0, Y_1, \ldots, Y_n\} \to \Lambda \cap ((k + c_g) k_{\text{reg}} - \rho) \) and let \((W_k)^{(Y_0, Y_1, \ldots, Y_n)} \), or simply, \((W_k)^{n+1} \) denote the space of functions from \(\{Y_0, Y_1, \ldots, Y_n\} \) with values in \(W_k \).

Lemma 2
The mappings
\[
\Phi : \{ (\alpha_i)_{0 \leq i \leq n} \in \Lambda^{n+1} \mid 1_{\text{reg}}(B(\alpha_i)) \neq 0 \} \ni (\alpha_i)_{0 \leq i \leq n} \mapsto \varphi(\alpha_i), \in \text{col}(X_L)
\]
\[
\Phi' : \{ (\alpha_i)_{0 \leq i \leq n} \in \Lambda^{n+1} \mid 1_{t_{\text{reg}}}(B(\alpha_i)) \neq 0 \} \ni (\alpha_i)_{0 \leq i \leq n} \mapsto \varphi(\alpha_i), \in \text{col}'(X_L)
\]
are well-defined bijections and we have
\[
\text{col}'(X_L) = \{ \varphi : \varphi \in \text{col}(X_L), \varphi \in (W_k)^{n+1} \}
\]
where \(\varphi \in (W_k)^{n+1} \) is given by \(\varphi(Y) = \varphi(Y) \cdot \varphi(Y) \) for all \(Y \in \{Y_0, Y_1, \ldots, Y_n\} \).

Proof.

1. **\(\Phi' \) is well-defined and surjective:** Clearly, we have \(\{ \varphi(\alpha_i), \mid (\alpha_i)_{0 \leq i \leq n} \in \Lambda^{n+1} \} = \Lambda^{(Y_0, Y_1, \ldots, Y_n)} \). On the other hand, for fixed \((\alpha_i)_{0 \leq i \leq n} \in \Lambda^{n+1} \) the relation \(1_{t_{\text{reg}}}(B(\alpha_i)) \neq 0 \) is equivalent to \(\text{Image}(B(\alpha_i)) = \text{Image}(\frac{1}{k + c_g} (\varphi(\alpha_i) + \rho)) \subset t_{\text{reg}} \) which is equivalent to \(\text{Image}(\varphi(\alpha_i)) \subset (k + c_g) t_{\text{reg}} - \rho \). The assertion now follows.

2. **\(\Phi \) is well-defined and surjective:** For fixed \((\alpha_i)_{0 \leq i \leq n} \in \Lambda^{n+1} \) the relation \(1_{\text{reg}}(B(\alpha_i)) \neq 0 \) is equivalent to \(\text{Image}(B(\alpha_i)) = \text{Image}(\frac{1}{k + c_g} (\varphi(\alpha_i) + \rho)) \subset P \) which is equivalent to \(\text{Image}(\varphi(\alpha_i)) \subset (k + c_g) P - \rho \). Thus the assertion follows if we can show that
\[
\Lambda \cap ((k + c_g) P - \rho) = \Lambda^k_+
\] (73)
In order to prove this equation note that \(P = C \cap \{ \lambda \in t \mid (\lambda, \theta) < 1 \} \) so we have

\[
\begin{align*}
\Lambda \cap ((k + c_\theta)P - \rho) &= \Lambda \cap (C \cap \{ \lambda \in t \mid (\lambda, \theta) < k + c_\theta \} - \rho) \\
&= \Lambda \cap (C - \rho) \cap \{ \lambda \in t \mid (\lambda + \rho, \theta) < k + c_\theta \} \\
&= \Lambda + \{ \lambda \in t \mid (\lambda, \theta) < k + c_\theta - (\rho, \theta) \} \\
&= \{ \lambda \in \Lambda_+ \mid (\lambda, \theta) < k + 1 \} \\
&= \{ \lambda \in \Lambda_+ \mid (\lambda, \theta) \leq k \} = \Lambda^k_+ .
\end{align*}
\]

Here step \((*)\) follows because for each \(\alpha \in \Lambda, \alpha + \rho \) is in the open Weyl chamber \(C \) iff \(\alpha \) is in the closure \(\overline{C} \), i.e. we have \(\Lambda \cap (C - \rho) = \Lambda \cap \overline{C} = \Lambda_+ \) (cf. the last remark in Sec. V.4 in [17]). Step \((***)\) follows from \(c_\rho = 1 + (\theta, \rho) \) and step \((**\ast)\) from \((\lambda, \theta) \in \mathbb{Z} \) for each \(\lambda \in \Lambda \).

3. Formula (72) holds: This follows from the fact that both the mapping \(W_{\text{aff}} \times \mathbb{P} \ni (\tau, b) \mapsto \tau \cdot b \in t_{\text{reg}} \) and the mapping \(i : W_{\text{aff}} \rightarrow W_k \) in Subsec. 2.2 are bijections.

4. \(\Phi \) and \(\Phi' \) are injective: Let \((\alpha'^{(i)}, \alpha'^{(i)}\}) \in \{ \{\alpha_t\}_{0 \leq i \leq n} \in \Lambda^{n + 1} \mid \varphi(\alpha^{(i)},) = \varphi(\alpha'^{(i)},) \} \) such that \(\varphi(\alpha^{(i)},) = \varphi(\alpha'^{(i)},) \). From Lemma 1 it then follows immediately that \(\alpha'^{(i)} = \alpha'^{(i)} \) for \(i \in \{1, 2, \ldots, n\} \). Moreover, from Eq. (67) and Eq. (50) we get \(\alpha'^{(0)} = \varphi(\alpha'^{(0)}(Y_{\sigma_0}) + \rho = \varphi(\alpha'^{(0)}(Y_{\sigma_0}) + \rho = \alpha'^{(0)} \) where \(Y_{\sigma_0} \) denotes the face which contains the point \(\sigma_0 \).

\[
\square
\]

Proof of Theorem 5.1 Applying Lemma 1 to Eq. (66) we obtain

\[
\begin{align*}
\text{St}_{\text{CS}}(L) &= K^{2-2g} \sum_{(\alpha_t) \in \Lambda^{n+1}} 1_P(B(\alpha_t), (\sigma_0))1_{(t_{\text{reg}})^c}(B(\alpha_t), (\prod_{j=1}^n m_{\gamma_j}(\varphi(\alpha_t), (Y_j^+) - \varphi(\alpha_t), (Y_j^-)))) \\
&\quad \times \prod_{(Y)}(\dim(\varphi(\alpha_t), (Y)))^{\chi(Y)}(\prod_{(Y)}(v_{\varphi(\alpha_t), (Y)})^{g(Y)}) \quad (74)
\end{align*}
\]

Without loss of generality we can assume that \(\sigma_0 \in Y_0 \). Then we obtain from Lemma 2

\[
\begin{align*}
\text{St}_{\text{CS}}(L) &= K^{2-2g} \sum_{\varphi \in \text{col}(X_L)} 1_P((k + c_\theta) \cdot (\varphi(Y_0) + \rho))\left(\prod_{j=1}^n m_{\gamma_j}(\varphi(Y_j^+) - \varphi(Y_j^-))\right) \\
&\quad \times \prod_{(Y)}(\dim(\varphi(Y)))^{\chi(Y)}(\prod_{(Y)}(v_{\varphi(Y)})^{g(Y)}) \quad (75)
\end{align*}
\]

Now observe that for all \(\tau \in W_k, b \in \Lambda \cap ((k + c_\theta)t_{\text{reg}} - \rho) \) we have

\[
\begin{align*}
v_{\tau \cdot b} &= v_b \\
\dim(\tau \cdot b) &= \text{sgn}(\tau)\dim(b)
\end{align*}
\]

Moreover, \(1_P((k + c_\theta)(\tau \cdot \varphi(Y_0) + \rho)) = 1_{t=1} \) for \(\varphi \in \text{col}(X_L), \tau \in W_k \). Thus we obtain from Eq. 75 and Eq. 72 in Lemma 2

\[
\begin{align*}
\text{St}_{\text{CS}}(L) &= K^{2-2g} \sum_{\varphi \in \text{col}(X_L)} \sum_{(\tau_t) \in (W_k)^{n+1}} 1_{\tau_t}(\prod_{j=1}^n m_{\gamma_j}(\varphi(Y_j^+) \cdot \varphi(Y_j^-) - \varphi(Y_j^+) \cdot \varphi(Y_j^-))) \\
&\quad \times \prod_{(Y)}(\text{sgn}(\tau(Y)))^{\chi(Y)}(\prod_{(Y)}(v_{\varphi(Y)})^{g(Y)}) \quad (78)
\end{align*}
\]
where \(t(j,+) \) resp. \(t(j,-) \) is the unique index \(t \in \{0,1,2,\ldots,n\} \) such that \(Y_t = Y^+_j \) resp. \(Y_t = Y^-_j \) holds. Each \(m_{\gamma_j} \) is invariant under the (classical) Weyl group \(W \). From (7) and (6) and the fact that each \(\tau \in W_{aff} \) can be written as the product of a translation and an element of \(W \) it easily follows that

\[
m_{\gamma_j}(\tau_{t(j,+)} \cdot \varphi(\gamma_j^+)) - \tau_{t(j,-)} \cdot \varphi(\gamma_j^-)) = m_{\gamma_j}(\varphi(\gamma_j^+) - \tau_{t(j,+)} \cdot \tau_{t(j,-)} \cdot \varphi(\gamma_j^-))
\]

(79)

Accordingly, let us set \(\tilde{\tau}_j := \tau_{t(j,+)} \cdot \tau_{t(j,-)} \cdot \varphi(\gamma_j^-) \). Clearly, we have

\[
\prod_{l=0}^{n}(\text{sgn}(\tau_l)^{\chi(Y_l)})\prod_{l=0}^{n}(\text{sgn}(\tau_l)^{\#\{ j \leq n | \text{arc}(l, \gamma_j) \subset \partial Y_l \}}) = \prod_{j=1}^{n}\text{sgn}(\tau_{t(j,+)})\text{sgn}(\tau_{t(j,-)}) = \prod_{j=1}^{n}\text{sgn}(\tilde{\tau}_j)
\]

(80)

(here step \((*)\) follows from \(\chi(Y_l) = 2 - \#\{ j \leq n | \text{arc}(l, \gamma_j) \subset \partial Y_l \} \)). On the other hand the expressions

\[
\sum_{\tilde{\tau}_1, \tilde{\tau}_2, \ldots, \tilde{\tau}_n \in W_k} \prod_{j=1}^{n}\text{sgn}(\tilde{\tau}_j)(\prod_{j=1}^{n}m_{\gamma_j}(\varphi(\gamma_j^+) - \tilde{\tau}_j \cdot \varphi(\gamma_j^-))) = \prod_{j=1}^{n}N_{\gamma_j \varphi(\gamma_j^-)}^{\varphi(\gamma_j^+)}
\]

Combining this with Eqs. (78)–(80) we obtain

\[
\text{St}_{CS}(L) = K^{2-2g} \sum_{\varphi \in \text{col}(X_L)} \left(\prod_{j=1}^{n}N_{\gamma_j \varphi(\gamma_j^-)}^{\varphi(\gamma_j^+)} \right) \prod_{Y}(\dim(\varphi(Y)))^{\chi(Y)} \left(\prod_{Y}(\varphi(Y))^{g(Y)} \right)
\]

\[
= K^{2-2g} \sum_{\varphi \in \text{col}(X_L)} |X_L|^{2|Y|} |X_L^{\gamma_j}|^{g(Y)}
\]

\[
= K^{2-2g} |X_L|
\]

q.e.d.

From Theorem 5.1 and Eq. (61) above we can conclude that WLO(L) coincides with \(|X_L| \) up to a multiplicative constant (independent of \(L \)). We can easily determine this multiplicative constant explicitly. According to Eqs. (63), (68), and Eq. (10) we have (cf. Eq. (73) and Example 4 above)

\[
C_1 = \frac{1}{\sum_{\lambda \in \Lambda_k^{+}}(K \dim(\lambda))^{2-2g}} = \frac{1}{K^{2-2g} |X_0|}
\]

(81)

so from Eq. (61) and Theorem 5.1 we finally obtain

\[
\text{WLO}(L) = \frac{|X_L|}{|X_0|}
\]

(82)

This agrees exactly with the formula appearing at the end of Subsec. 4.1 above.

6 A path integral derivation of the quantum Racah formula

In [12] WLO(L) was evaluated in the torus gauge approach in the special case where the link \(L \) consists exclusively of 3 vertical loops with colors \(\lambda, \mu, \nu \in \Lambda_k^{+} \) (cf. Remark 4 below). The result of this evaluation is the expression on the right-hand side of Eq. (11) above. As we showed in Secs. 4–5 when evaluating the WLOs of loops without double points in the torus gauge approach the expressions on the right-hand side of Eq. (15) arise naturally. In other words: both the left-hand side and the right-hand side of Eq. (15) appear naturally in the torus gauge approach when computing the WLOs of suitable links. One can therefore hope to obtain a path integral derivation of Eq. (15) by considering links that contain both vertical loops and loops without double points. Accordingly, let us now generalize some of the results obtained in Secs. 4 and 5 to this more general situation where the (colored) link \(L = (l_1, l_2, \ldots, l_N, \gamma_1, \gamma_2, \ldots, \gamma_N) \) is allowed to contain vertical loops. More precisely, we assume that the sub link \((l_1, l_2, \ldots, l_n, n \leq N) \), is admissible and each loop \(l_k \) for \(k \in \{n+1, \ldots, N\} \) is a “vertical” loop “above” the point \(\sigma_k \in \Sigma \), i.e. \(l_k^a \) is a constant mapping taking only the value \(\sigma_k \). For each of the vertical loops \(l_k, k \in \{n+1, \ldots, N\} \), we will use a “canonical” framing, i.e. a framing which fulfills
the following condition: if the framing is represented\(^\text{32}\) in terms of a vector field \(X\) on \(arc(l_k)\), then the projection of each vector \(Xl_k(s), s \in [0,1]\), onto \(T_{l_k} \Sigma\) coincides with some fixed vector \(v \in T_{l_k} \Sigma\).

Finally, we will assume for simplicity that \(\text{wind}(l_k^{(1)}) = 1\) for each \(k \in \{n + 1, \ldots, N\}\).

Then, using similar arguments as in Subsec. \(\text{4.4}\) we can again derive Eq. \((\text{61})\) where \(\text{St}_{CS}(L)\) is now given by

\[
\text{St}_{CS}(L) := \sum_{\alpha_1, \alpha_2, \ldots, \alpha_n \in \Lambda} \sum_{b \in \text{reg}\Lambda} \left(\prod_{j=1}^{n} m_j(\alpha_j) \right) \left(1_{(t_{reg})}v(B)1_p(B(\sigma_0)) \det_{reg}(1_{t_{reg}} - \exp(\text{ad}(B)1_{t_{reg}})) \times \left(\prod_{k=n+1}^{N} \chi_{\gamma_k}(\exp(B(\sigma_k))) \right) \times \prod_{j=1}^{n} \exp(2\pi i(\alpha_j, \sum_{k} e_j^{1/2}[B(\tilde{\phi}_s(\sigma_k^j)) + B(\tilde{\phi}_s^{-1}(\sigma_k^j))]) \right)_{|B=b+\sum_{j=1}^{n} \alpha_j 1^{\text{shift}}_{\gamma_j}^{\text{reg}}}
\]

for sufficiently small \(s > 0\). Recall that \(\chi_{\gamma_k}\) is the character associated to the dominant weight \(\gamma_k\).

Also the computations in the proof of Theorem \(\text{5.1}\) can be generalized in a straightforward way. One obtains

\[
\text{St}_{CS}(L) = \sum_{\varphi \in \text{col}(X_L)} \left(\prod_{j=1}^{n} M_{\gamma_j}(Y_{\varphi}(Y_0^+)) \prod_{k=n+1}^{N} \chi_{\gamma_k}(\exp(\varphi(Y_{\sigma_k}) + \rho)) \right) \times \prod_{Y}(\text{dim}(\varphi(Y)))^{\chi(Y)} \left(\prod_{Y} (v_{\varphi}(Y))^{\text{Gl}(Y)} \right)
\]

where \(Y_{\sigma_k}, k \in \{n + 1, \ldots, N\}\), denotes the face in which \(\sigma_k\) lies and where we have set

\[
M_{\gamma\alpha} := \sum_{\tau \in W_k} \text{sgn}(\tau)m_\alpha(\alpha - \tau(\beta))
\]

(According to Eq. \((\text{15})\) we have \(M_{\gamma\alpha} = N_{\gamma\alpha}^2\) so we could replace \(M_{\gamma\alpha}\) by \(N_{\gamma\alpha}^2\) above. But as we want to give a path integral derivation of Eq. \((\text{15})\) which is based on Eq. \((\text{83})\) we avoid this replacement here.)

Now observe that

\[
\chi_{\mu}(\exp(\varphi(Y_{\sigma_k}) + \rho)) = \frac{S_{\mu\lambda}}{S_{0\lambda}}
\]

Eq. \((\text{86})\) follows from the definition of the S-matrix in Subsec. \(\text{2.2}\) if one takes into account Weyl’s character formula. Combining Eqs. \((\text{61}), (\text{81}), (\text{84}),\) and \((\text{86})\) we finally obtain

\[
\text{WLO}(L) = \sum_{\varphi \in \text{col}(X_L)} \left(\prod_{j=1}^{n} M_{\gamma_j}(Y_{\varphi}(Y_0^+)) \prod_{k=n+1}^{N} \frac{S_{\gamma_k(\varphi(Y_{\sigma_k}))}}{S_{0\varphi(\varphi(Y_{\sigma_k}))}} \right) \prod_{Y}(\text{dim}(\varphi(Y)))^{\chi(Y)} \left(\prod_{Y} (v_{\varphi}(Y))^{\text{Gl}(Y)} \right)
\]

In the special case \(n = 0\), i.e. in the case where there are only vertical loops, there is only one face \(Y_0 = \Sigma\) and we have \(\text{gl}(\varphi(Y_0)) = 0\), \(\chi(\Sigma) = \chi(\varphi(Y_{\sigma_k})) = 2 - 2g\) so Eq. \((\text{87})\) then reduces to

\[
\text{WLO}(L) = \sum_{\varphi \in \text{col}(X_L)} \left(\prod_{k=1}^{N} \frac{S_{\gamma_k(\varphi(Y_{\sigma_k}))}}{S_{0\varphi(\varphi(Y_{\sigma_k}))}} \right) \text{dim}(\lambda)^{2-2g}
\]

Remark 4 In the special case \(G = SU(2)\) the last equation is equivalent to formula (7.27) in \([\text{12}]\). We remark that for vertical loops the inner integral in Eq. \((\text{49})\) is trivial, so for the derivation of Eq. \((\text{88})\) one does not need the general formula \((\text{49})\) but can work with the simpler formulas appearing in \([\text{12}]\), cf.

\(^{32}\)alternatively, if we represent the framing in terms of another loop \(l_k^{(1)}\) which is “sufficiently close” to \(l_k\) (cf. e.g. Sec. 2.1 and Fig. 3b and Fig. 3c in \([\text{58}]\)) then a canonical framing is one where (not only \(l_k\) but also \(l_k^{(1)}\) is vertical loop
equations (7.1) and (7.24) in [12]. In the special case where \(N = 3\) and \(\Sigma = S^2\), i.e. \(g = 0\) we get from Eq. (88) (setting \(\lambda := \gamma_1, \mu := \gamma_2, \nu := \gamma_3\))

\[
\text{WLO}(L) = \frac{1}{|X_0|} \sum_{\lambda_0} \frac{S_{\lambda_0 \lambda_0} S_{\mu \lambda_0} S_{\nu \lambda_0}}{S_{0 \lambda_0} S_{0 \lambda_0} S_{0 \lambda_0}} \dim(\lambda_0)^2 = \frac{N_{\lambda \mu \nu}}{\sum_{\alpha} S_{0 \alpha}^{2}} = N_{\lambda \mu \nu}
\]

(89)

(here we have used \(\sum_{\alpha} S_{0 \alpha}^{2} = (S \cdot S^T)_{00} = (S^2)_{00} = C_{00} = 1\). By combining Eq. (89) with Eq. (4.36) in [58] one obtains the Verlinde formula (13a), cf. Sec. 7.6 in [12]. (Observe that the expression \(N_{ijk}\) in Eq. (4.36) in [58] does not correspond to \(N_{ijk}^{\dagger}\) in our notation but to \(N_{ijk}^{\dagger}\), cf. Sec. 2.2.)

In order to obtain a path integral derivation of Eq. (15) let us now restrict ourselves to the special case \(\Sigma = S^2\) and consider a link \(L\) in \(M = \Sigma \times S^1 = S^2 \times S^1\) which consists of 2 vertical loops \(l_2, l_3\) over the point \(\sigma_2\) resp. \(\sigma_3\) with colors \(\mu\) and \(\nu\) and one non-vertical loop \(l_1\) with color \(\lambda\). We assume that \(\text{wind}(l_1) = 1\) for all \(i = 1, 2, 3\) and that \(l_2\) is a Jordan loop (i.e. a simple loop without crossings). Moreover, we assume that \(\sigma_2, \sigma_3\) are on different sides of \(l_2\), i.e. that the loop projections \(l_2^1, l_2^2, l_2^3\) look as in Fig. 5.

![Figure 5](image)

We will now evaluate \(\text{WLO}(L)\) in two different ways. By comparing these two different evaluations of \(\text{WLO}(L)\) with each other we will then obtain a system of linear equations for the “unknowns” \(M_{\gamma \alpha}^i\), \(\alpha, \beta, \gamma \in \Lambda_3^k\). Later we will show that the unique solution of this system of linear equations is \(M_{\gamma \alpha}^i = N_{\gamma \alpha}^i\), \(\alpha, \beta, \gamma \in \Lambda_3^k\), which is nothing but formula (15).

1. **Evaluation:** Let us apply Eq. (90) to the link \(L\). Observe that we have to take \(n = 1, N = 3\) and \((\gamma_1, \gamma_2, \gamma_3) = (\lambda, \mu, \nu)\). We obtain

\[
\text{WLO}(L) = \frac{1}{|X_0|} \sum_{\varphi \in \text{col}(X_L)} M_{\lambda \varphi}^{(Y_0^-)} \left(\prod_{k=2}^{3} \frac{S_{\lambda \varphi(Y_k)}}{S_{\lambda \varphi(Y_k)}} \prod_{t=0}^{1} (\dim(\varphi(Y_t)))^{4(Y_t)} \right) \left(\prod_{t=0}^{1} (\dot{\varphi}(Y_t))^{2(Y_t)} \right)
\]

(90)

Note that in this situation there are only two faces namely \(Y_0 := Y_1^+\) and \(Y_1 := Y_1^-\) and we have \(\sigma_2 \in Y_0\) and \(\sigma_3 \in Y_1\) (cf. Fig. 6) note that the point \(\sigma_2\) is labelled by the letter \(\nu\) and \(\sigma_3\) by the letter \(\mu\). Moreover, \(g(Y_0) = 1, g(Y_1) = -1, \chi(Y_1) = 1, \chi(Y_0) = 2 - 2g - 1 = 1\) (as \(\Sigma = S^2\), so \(g = 0\)). Using the variables \(\lambda_0 := \varphi(Y_0)\) and \(\lambda_1 := \varphi(Y_1)\) we now obtain

\[
\text{WLO}(L) = \frac{1}{|X_0|} \sum_{\lambda_0, \lambda_1} M_{\lambda_0 \lambda_1}^{\lambda_0} \frac{S_{\lambda_0 \lambda_0}}{S_{0 \lambda_0}} \frac{S_{\mu \lambda_0}}{S_{0 \lambda_0}} \dim(\lambda_0) \dim(\lambda_1) T_{\lambda_0 \lambda_0}^{-1} T_{\lambda_1 \lambda_1}^{-1}
\]

(91)

2. **Evaluation:** Another explicit evaluation of \(\text{WLO}(L)\) can be obtained by considering, as an auxiliary object, the colored link \(\dot{L} = ((\hat{l}_1, \hat{l}_2, \hat{l}_3), (\lambda, \mu, \nu))\) in \(M = S^2 \times S^1\) where each \(\hat{l}_j, j \in \{1, 2, 3\}\), is a vertical loop over the point \(\sigma_j\) with \(\text{wind}(\hat{l}_j) = 1\), cf. Fig. 6 below. From Eq. (88) (or Eq. (89)) we obtain

\[
\text{WLO}(\dot{L}) = \frac{1}{|X_0|} \sum_{\lambda_0} \frac{1}{S_{0 \lambda_0}} \frac{1}{S_{\lambda_0 \lambda_0}} \frac{1}{S_{\lambda_0 \lambda_0}} \frac{1}{S_{\lambda_0 \lambda_0}} \dim(\lambda_0) \dim(\lambda_1) T_{\lambda_0 \lambda_0}^{-1} T_{\lambda_1 \lambda_1}^{-1}
\]

(91)

Note that, strictly speaking, this is not quite a “path integral derivation” of the Verlinde formula since the derivation of the Eq. (4.36) in [58] is not based solely on the CS path integral. In fact, since the numbers \(N_{ij}^k\) are defined abstractly, a genuine path integral derivation of the Verlinde formula (13a) can not be expected.
Let us now deform \(\hat{L} \) using an orientation preserving diffeomorphism \(\phi : S^2 \times S^1 \to S^2 \times S^1 \) of the form \(\phi(\sigma, t) = (\theta(\sigma), t) \) for \(\sigma \in S^2 \), \(t \in S^1 \) where \(\theta : S^1 \cong SO(2) \to \text{Diff}(S^2) \) is the group homomorphism corresponding to the rotation of \(S^2 \) in \(\mathbb{R}^3 \) around a suitably chosen rotation axis \(\hat{a} \in \mathbb{R}^3 \) (and where we have set \(\theta_t := \theta(t) \) for \(t \in S^1 \)). Let \(\tilde{L} \) be the link obtained from \(\hat{L} \) by the deformation \(\phi \). For a suitable choice of the rotation axis \(\hat{a} \) the projection of \(\tilde{L} \) onto \(\Sigma = S^2 \) will look like in Fig. 7. From the invariance properties of the Chern-Simons path integral we conclude at a heuristic level that

\[
\text{WLO}(\tilde{L}) = \text{WLO}(\hat{L}) = \frac{1}{|X_0|} \frac{1}{S_{00}^2} N_{\lambda \mu \nu} \quad (92)
\]

On the other hand, after performing a suitable change of framing \(^{34}\) for each of the two loops \(l_2 \) and \(l_3 \) (i.e. the two vertical loops with colors “\(\mu \)" and “\(\nu \)" in Fig. 5) the link \(L \) becomes isotopic to \(\tilde{L} \). According to Eq. (2.33) in \(^{55}\) (and the paragraph after Eq. (4.40) in Sec. 4.5 in \(^{58}\) where the conformal weight \(h \) appearing in (2.33) in \(^{58}\) is related to the matrix \(T \)) each of these two changes of framing \(^{35}\) alters the value of the WLO by a factor \(T_{\mu \mu} \) and \(T_{\nu \nu}^{-1} \), i.e. we have

\[
\text{WLO}(L) = \frac{T_{\mu \mu}}{T_{\nu \nu}} \text{WLO}(\tilde{L}) = \frac{1}{|X_0|} \frac{1}{S_{00}^2} \frac{T_{\mu \mu}}{T_{\nu \nu}} N_{\lambda \mu \nu} \quad (93)
\]

Conclusion: By combining the two equations (91) and (93) we obtain

\[
\frac{T_{\mu \mu}}{T_{\nu \nu}} N_{\lambda \mu \nu} = \sum_{\lambda_0, \lambda_1} M_{\lambda_0}^{\lambda_1} S_{\nu, \lambda_0} S_{\mu, \lambda_1} T_{\lambda_0, \lambda_0} T_{\lambda_1, \lambda_1}^{-1} \quad (94)
\]

On the other hand according to Eq. (28) in Example 2 above we have

\[
\frac{T_{\mu \mu}}{T_{\nu \nu}} N_{\lambda \mu \nu} = \sum_{\lambda_0, \lambda_1} N_{\lambda_0}^{\lambda_1} S_{\nu, \lambda_0} S_{\mu, \lambda_1} T_{\lambda_0, \lambda_0} T_{\lambda_1, \lambda_1}^{-1} \quad (95)
\]

Eq. (94) and Eq. (95) imply \(\sum_{\lambda_0, \lambda_1} M_{\lambda_0}^{\lambda_1} S_{\nu, \lambda_0} S_{\mu, \lambda_1} T_{\lambda_0, \lambda_0} T_{\lambda_1, \lambda_1}^{-1} = \sum_{\lambda_0, \lambda_1} N_{\lambda_0}^{\lambda_1} S_{\nu, \lambda_0} S_{\mu, \lambda_1} T_{\lambda_0, \lambda_0} T_{\lambda_1, \lambda_1}^{-1} \). This holds for arbitrary \(\lambda, \mu, \nu \in \Lambda_k^+ \) so using the fact that S-matrix and the T-matrix are invertible (cf. Eqs. (1) above) we indeed obtain \(M_{\mu \nu} = N_{\mu \nu} \) (for all \(\lambda, \mu, \nu \in \Lambda_k^+ \)).

\(^{34}\) Alternatively, we can replace the two changes of framing by two simple surgery operations. The first surgery operation involves a suitable tubular neighborhood of the vertical loop \(l_2 \) in Fig. 5 (cf. Sec. 4.2 in \(^{58}\)); the second surgery operations involves a similar tubular neighborhood of the vertical loop \(l_3 \)

\(^{35}\) Similarly, according to Sec. 4.5 in \(^{58}\) the two surgery operations mentioned in the previous footnote will alter the value of the WLO by the factor \(T_{\mu \mu} T_{\nu \nu}^{-1} \), so also by using the surgery argument we arrive at Eq. (93).
Remark 5 Witten’s argument from Sec 4.5 in [58] which we used in the paragraph preceding Eq. (93) is based on ideas from conformal field theory. So if we want to give a (complete) path integral derivation of Eq. (15) we will have to derive the first equality in Eq. (93) using only path integral methods, cf. [37] for partial results in this direction. On the other hand, if one is happy with “mixing” arguments from conformal field theory and arguments based on the CS path integral then the derivation of the (elementary) quantum Racah formula Eq. (15) which we have just given is fine and by combining Eq. (15) with the Verlinde formula derived in Remark 4 (using Eq. (4.36) in [58]) one finally obtains
\[\hat{N}_{\beta}^{\gamma\alpha} = \sum_{\tau \in W_\gamma} \text{sgn}(\tau) m_{\gamma}(\alpha - \tau(\beta)) \], which is the affine Lie algebra version of the “abstract” quantum Racah formula appearing at the end of Subsec. 2.2.

7 Outlook

In the introduction we mentioned one of the most important open questions in the theory of 3-manifold quantum invariants, the question whether and how one can make rigorous sense of Witten’s heuristic path integral expressions for the Wilson loop observables of Chern-Simons theory, cf. the r.h.s. of Eq. (41). A related and probably less difficult question is whether and how one can make rigorous sense of those path integral expressions that arise from the r.h.s. of Eq. (41) after choosing a suitable gauge fixing. Until recently Lorentz gauge fixing was the only gauge fixing procedure for which the relevant path integral expressions have been evaluated completely for general groups, links and manifolds, cf. [29, 10, 7, 16, 8, 4]. The final result of this evaluation is a complicated infinite series whose terms involve integrals over (high-dimensional) “configuration spaces”, cf. [16, 4]. The heuristic path integral expressions which appear during the intermediate computations are even more complicated and it should be hard to find a rigorous realization of these path integrals.

It is therefore desirable to find other gauges for which the WLOs can also be evaluated explicitly. A gauge which leads to the expressions appearing in Turaev’s shadow world approach to the 3-manifold quantum invariants would be particularly desirable. This is because the expressions appearing in the shadow world approach involve only finite sums, which are defined in a purely combinatorial way. These finite combinatorial sums are considerably less complicated than the infinite series of configuration space integrals mentioned above. Accordingly, it is reasonable to believe that for such a gauge fixing also the corresponding path integral expressions and the heuristic arguments used for their evaluation will be less complicated than those for Lorentz gauge fixing.

The results in [33] and the present paper suggest that for manifolds M of the form $M = \Sigma \times S^1$ torus gauge fixing is a gauge fixing with the desired properties. Moreover, it is reasonable to expect that the path integral expressions for the WLOs in the torus gauge, i.e. the r.h.s. of Eq. (49) above, admit a rigorous treatment, either in a “continuum setting” (cf. Secs. 8–9 in [31], Sec. 4–6 in [33], and [34] for partial results) or in a suitable “simplicial setting” (cf. [35, 36] for ongoing work in this direction).

References

\[36\] for CS models on the special manifold $M = \mathbb{R}^3$ there is an alternative approach based on light-cone gauge fixing and a suitable complexification of the manifold, cf. [26, 10]. However, in this approach certain correction factors have to be inserted “by hand” in the course of the computations. At present the origin of these correction factors is not clear.

\[37\] There are, however, some very interesting partial results in this direction, cf. [10].

[57] K. Walker On Witten’s 3-manifold invariants, preprint, 1991

Amsterdam University College, University of Amsterdam
Plantage Muidergracht 14, 1018 TV Amsterdam
and
Institute for Theoretical Physics, University of Amsterdam
Science Park 904, Postbus 94485, 1090 GL Amsterdam, The Netherlands
E-mail address: s.deharo@auc.nl

Grupo de Física Matemática da Universidade de Lisboa
Av. Prof. Gama Pinto, 2
PT-1649-003 Lisbon, Portugal
E-mail address: atle.hahn@gmx.de