Activation and sensing of hydrogen in nature
Bleijlevens, B.

Citation for published version (APA):
Bleijlevens, B. (2002). Activation and sensing of hydrogen in nature

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
The [NiFe] hydrogenase from *Allochromatium vinosum* studied in EPR detectable states: H/D exchange experiments that yield new information about the structure of the active site

Boris Bleijlevens, Bart W. Faber and S.P.J Albracht

Swammerdam Institute for Life Sciences, Biochemistry, University of Amsterdam,
Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands
ABSTRACT
In this study we report on thus-far unobserved proton hyperfine couplings in the well-known EPR signals of [NiFe] hydrogenases. The preparation of enzyme in several highly homogeneous states allowed us to carefully re-examine the Ni$_{i}^+$, Ni$_{i}'$, Ni$_{i}-C'$ and Ni$_{i}-L'$ EPR signals which are present in most [NiFe] hydrogenases. At high resolution (modulation amplitude 0.57 G) clear indications for hyperfine interactions were observed in the g line of the Ni$_{i}'$ EPR signal. The hyperfine pattern became more pronounced in 3H$_2$O. Simulations of the spectra suggested the interaction of the Ni-based unpaired electron with two equivalent, non-exchangeable protons ($A_{\mu} = 13.2$ MHz) and one exchangeable proton ($A_\gamma = 6.6$ MHz) in the Ni$_{i}'$ state. Interaction with an exchangeable proton could not be observed in the Ni$_{i}$ EPR signal. The identity of the three protons is discussed and correlated to available ENDOR data. It is concluded that the NiFe centre in the Ni$_{i}'$ state contains a hydroxide ligand bound to the nickel, which is pointing towards the gas channel rather than to iron.
[NiFe] hydrogenases catalyse the reversible oxidation of molecular hydrogen into two protons and two electrons. Presently, the crystal structures of five [NiFe] hydrogenases have been determined. The active site consists of two metal ions, one Ni and one Fe, bound to the protein via four cysteine thiols (Volbeda, 1995). The valence state of the Ni ion usually shuttles between II and III. The Fe remains in a low-spin Fe(II) state (Surerus, 1994; Dole, 1997) and binds three unusual ligands, two cyanides and one carbon monoxide (Volbeda, 1996a; Happe, 1997; Pierik, 1999). Exchange experiments showed that the splitting of dihydrogen is heterolytic (Krasna, 1954). The proton that is the result of this splitting is transferred via a proton channel to the outside of the molecule. The produced hydride is oxidised and the electrons are transferred via one or more Fe-S clusters to an electron-acceptor site.

Most [NiFe] hydrogenases are reversibly inactivated by oxygen. This enables aerobic purification of these enzymes. The inactivated enzyme can be reactivated by a process that has become known as 'reductive activation'. This is normally carried out by incubation under a hydrogen gas atmosphere. For Allochromatium vinosum [NiFe] hydrogenase this procedure consists of a 30 min incubation under 100% H₂ at 50°C. Studies on the properties of [NiFe] hydrogenases have revealed that they can exist in a number of states, distinguishable by EPR and FTIR spectroscopy (for an overview see Albracht, 1994).

EPR studies on the enzymes from Desulfovibrio gigas and A. vinosum showed that there are two EPR-detectable, inactive, oxidised states. The first state, with \(g_{ex} = 2.31, 2.24, 2.01 \), represents an unready form of the enzyme as it takes at least one hour at room temperature to show activity with hydrogen. This state is termed Ni^u* (u for 'unready', * for an \(S = 1/2 \) system) or Ni-A. The second state, with \(g_{ex} = 2.33, 2.16, 2.01 \), is termed Ni^r* (r for 'ready') or Ni-B as it readily activates with hydrogen (Fernandez, 1985). The EPR-detectable, reduced form of the enzyme was termed Ni^r-C^* (\(g_{ex} = 2.21, 2.15, 2.01 \), a for 'active'). This state is light-sensitive at cryogenic temperatures and is then converted to the Ni^r-L* state with \(g_{ex} = 2.28, 2.11, 2.045 \) (Van der Zwaan, 1985).

Re-oxidation of active enzyme with \(^1\)O₂ showed that in both the Ni^u* as well as the Ni^r* state an oxygen species is close to the unpaired electron on nickel since the \(I = 5/2 \) nucleus of \(^1\)O caused line broadening of both EPR signals (Van der Zwaan, 1990). In the crystal structure of as-isolated, oxidised D. gigas hydrogenase a patch of electron density, observed between the nickel and the iron, was attributed to a bridging oxygen species (Volbeda, 1996a). The crystal structure of reduced, active [NiFeSe] hydrogenase from Desulfomicrobium baculatum did not show this electron density (Garcin, 1999). The oxidised D. gigas hydrogenase used to obtain crystals was a mixture of several forms of the enzyme. EPR analysis of the crystals showed that 50% of the Ni sites was EPR silent. From the remaining half, 85% was in the Ni^r* and 15% was in the Ni^u* state. The EPR silent enzyme molecules were not in an active or ready form since development of full hydrogenase uptake activity required hours of incubation under 100% H₂ (Volbeda, 1995). Up till now, it has not been possible to obtain the D. gigas enzyme solely in the Ni^u* or Ni^r* state. A. vinosum hydrogenase is spectroscopically very similar to the D. gigas enzyme, but it can be manipulated into either the Ni^u* or the Ni^r* state for more than 95% of the sites.

Electron-nuclear double resonance (ENDOR) measurements on A. vinosum hydrogenase in the Ni^r* state revealed the interaction of four protons with the Ni-based unpaired electron (Geffner, 1999). Two protons with a mainly isotropic coupling of 12.6 and 12.5 MHz were assigned to belong to the β-
CH₃ group of a bridging cysteine residue (equivalent to Cys533 in the D. gigas structure). A third proton (coupling mainly anisotropic, 3.5 MHz) was considered to be the closest proton of the β-CH₃ of the second bridging cysteine residue (Cys68) or a thiol-proton on one of the terminal cysteine residues (Cys65 or Cys530). Interaction with a fourth nucleus was observed only in the high-field region of the spectrum, near g = 2.01. This coupling was obscured by the strong absorption of the [3Fe-4S]⁺⁺ cluster in this region at 10 K. A coupling constant of ~6 MHz was estimated and tentatively assigned to be caused by the methyl group of Val67.

In this paper we studied the effect of exchangeable protons on the EPR signals of the Ni site in the inactive oxidised Ni⁺ and Ni⁺⁺ state. We found that the 6 MHz coupling is from an exchangeable proton; the coupling is anisotropic and only observed in the Ni⁺⁺ state.
MATERIALS AND METHODS

Purification. *A. vinosum* DSM 185 was grown in a 700 litre batch culture (Van Heerikhuizen, 1981) in a medium essentially as described previously (Hendley, 1955; Albracht, 1983). The membrane-bound [NiFe] hydrogenase was isolated and purified as described (Coremans, 1992b). The Fe₃⁺-non-reducing hydrogenase from *Methanothermobacter marburgensis* (formerly *Methanobacterium thermotrophicum* strain Marburg) was a gift from Dr. R. Hedderich (Marburg, Germany).

EPR Spectroscopy. X-band EPR spectra were recorded on a Bruker ECS 106 spectrometer. The modulation frequency was 100 kHz. Cooling of the sample was performed using an Oxford Instruments ESR 900 cryostat with an ITC4 temperature controller. The magnetic field was calibrated with an AEG magnetic field meter. The microwave frequency was measured with a Hewlett-Packard 5244A Microwave Frequency Counter. The modulation amplitude was 0.57 G, unless stated otherwise.

Simulations of EPR spectra. Spectra were simulated using home-made programs based on published formulas (Beinert, 1982). For the simulation of a separate gₚ line of a rhombic spectrum this line was treated as an inverse, absolute, isotropic signal with hyperfine interaction with two or three I = 1/2 nuclei. The resultant line shape was compared with the experimental gₚ lines. This method enabled rather accurate values for coupling constants (A) and line widths (W).

Preparation of the redox states. The two oxidised, inactive states, the Ni₃⁺ (Ni-A) and the Ni₄⁺ (Ni-B) state, were produced at high homogeneity in buffers prepared with either H₂O or D₂O. In D₂O, pD values were pH + 0.41. For the Ni₃⁺ state, enzyme in a 10 mM MES/CAPS O buffer (pH 6.0) was incubated under 100% H₂ at 50°C for 30 min in a septum-capped bottle. The reduced, activated enzyme was incubated under 100% carbon monoxide (10 min at room temperature) and subsequently oxidised at 50°C by slowly allowing air into the bottle via a thin needle. The Ni₄⁺ state was prepared in 10 mM MES/CAPSO buffer (pH 9.0). Enzyme was activated as described above, but then it was re-oxidised quickly by a 10-fold dilution in an ice-cold, oxygen-saturated buffer. The Ni₄⁺-C⁺ state was prepared in 50 mM MES buffer (pH 6.5) by activation (as described above) and subsequent incubation under a mixture of 1% H₂ and 99% He for 15 minutes at room temperature. The Ni₄⁺-C⁺ state was converted to the Ni₄⁺-L⁺ state by illumination of the samples at 30 K (Van der Zwaan, 1985). During incubations the samples were stirred to optimise gas exchange. After oxidation, 20% glycerol was added to the Ni₃⁺ and Ni₄⁺ samples to minimise freezing artefacts.
RESULTS

The A. vinoseum [NiFe] hydrogenase was prepared in four EPR-detectable states (Ni+, Ni3+, Ni-C, Ni-L'). The effect of exchangeable protons on EPR spectra recorded with modulation amplitudes of 0.57 G was studied.

The Ni+ state in H\textsubscript{2}O showed a rhombic spectrum. The g values were 2.312, 2.237 and 2.013 (\textit{g}_{app}) with apparent line widths of 15.6, 10.9 and 4.8 G (\textit{W}_{app}) at a modulation amplitude of 0.57 G. (Figure 1A). Close inspection of the separate g values showed a faintly resolved hyperfine splitting in the g\textsubscript{x} line only (Figure 2D). A similar, better resolved, splitting was observed in the g\textsubscript{z} line of the EPR spectrum of the F\textsubscript{700}-nonreducing hydrogenase from \textit{M. marburgensis} in the Ni3+ state (Figure 2D). In neither of the two enzymes did the \textit{g}_{x} or the \textit{g}_{y} line show similar resolved couplings. The spectrum of the Ni+ state of \textit{A. vinoseum} hydrogenase prepared in D\textsubscript{2}O was, apart from a small increase in the width of the g\textsubscript{z} line, the same as in H\textsubscript{2}O (table 1). The faint shoulders in the g\textsubscript{z} line were unaltered, showing that they are not due to exchangeable protons (Figure 2D).

The enzyme in the Ni3+ state prepared in H\textsubscript{2}O showed an EPR signal with g values at 2.330, 2.160 and 2.008 (\textit{g}_{app}) with line widths of 16.5, 10.9 and 3.1 Gauss (Figure 1B). A faintly resolved splitting in the g\textsubscript{z} line was observed. In D\textsubscript{2}O this splitting was much better resolved (Figure 2C) indicating the removal of the contribution of one or more exchangeable protons. The other two lines (\textit{g}_{x} and \textit{g}_{y}) did not show any signs of coupling to exchangeable protons. When in the Ni3+ state in D\textsubscript{2}O the buffer was exchanged for H\textsubscript{2}O, the EPR spectrum remained unchanged (not shown). This showed that it was not possible to exchange incorporated deuteron(s) with bulk proton(s) once the enzyme was in the oxidised state.

![Figure 1. EPR spectra of A. vinoseum [NiFe] hydrogenase in the oxidised states in H\textsubscript{2}O and D\textsubscript{2}O. Panel A: Enzyme in the Ni+ state. Panel B: Enzyme in the Ni3+ state. EPR conditions: microwave frequency, 9424 MHz (A), 9423 MHz (B); temperature, 70 K; power, 2 mW; modulation amplitude, 0.57 G.](image-url)
Figure 2. Detailed view of the EPR spectra of A. vinosum [NiFe] hydrogenase in H$_2$O (top) and in D$_2$O (middle). Subtractions of these spectra are shown at the bottom. Panels A, B and C: g_x, g_y and g_z region of the Ni$^\text{II}$ state. Panel D: g_z region of the Ni$^\text{IV}$ state of A. vinosum in H$_2$O (top) and D$_2$O (middle) and the g_z region of the F$_{\text{ex}}$-nonreducing [NiFe] hydrogenase from M. marburgensis in the Ni$^\text{IV}$ state in H$_2$O (bottom). All three spectra in panel D are averages of 6 measurements. EPR conditions for all traces: microwave frequency, 9425 MHz; temperature, 70 K; power, 2 mW; modulation amplitude, 0.57 G.

Table 1. g values and apparent line widths (in Gauss) for EPR signals of the Ni$^\text{II}$ and Ni$^\text{IV}$ states prepared in either H$_2$O or D$_2$O*

<table>
<thead>
<tr>
<th></th>
<th>g_x</th>
<th>W_x</th>
<th>g_y</th>
<th>W_y</th>
<th>g_z</th>
<th>W_z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni$^\text{II}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(H$_2$O)</td>
<td>2.312</td>
<td>15.6</td>
<td>2.237</td>
<td>10.9</td>
<td>2.013</td>
<td>4.8</td>
</tr>
<tr>
<td>(D$_2$O)</td>
<td>2.312</td>
<td>15.6</td>
<td>2.237</td>
<td>12.2</td>
<td>2.013</td>
<td>4.8</td>
</tr>
<tr>
<td>Ni$^\text{IV}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(H$_2$O)</td>
<td>2.330</td>
<td>16.5</td>
<td>2.160</td>
<td>10.9</td>
<td>2.008</td>
<td>3.1</td>
</tr>
<tr>
<td>(D$_2$O)</td>
<td>2.330</td>
<td>15.5</td>
<td>2.160</td>
<td>9.8</td>
<td>2.008</td>
<td>3.1</td>
</tr>
</tbody>
</table>

'Spectra were recorded under non-saturating conditions (temperature, 70 K; microwave power, 2 mW; modulation amplitude, 0.57 G). Data based on simulations of whole spectra except for W_y which are based on simulations of the g_z region only and accounting for magnetic interaction with proton nuclei (for details see Figure 3).

In order to better understand the nature of the detectable couplings in the g_z region, the signals were simulated. The g_z line of the EPR spectrum of Ni$^\text{IV}$ in D$_2$O could be simulated with a width (W_z) of 3.1 G plus a splitting by two equivalent nuclei ($I = 1/2$) with a coupling constant (A_{yz}) of 4.7 G (Figure 3B). In order to simulate the g_z region of Ni$^\text{IV}$ in H$_2$O an additional coupling ($I = 1/2$) with $A_z = 2.35$ G was required to optimally fit the shape of this g_z line (Figure 3A). Comparison of the spectra of Ni$^\text{IV}$ in H$_2$O and in D$_2$O showed that the hyperfine coupling from the exchangeable proton is mainly anisotropic since it was observed only in the z direction (Figure 2). The line widths in the x and in the y directions did not change upon H/D exchange and so no isotropic hyperfine interaction could be detected for this proton.
Figure 3. Simulations of the g region of the EPR spectrum of the Ni$'$ state from *A. vinosum* hydrogenase prepared in H$_2$O (A) and in D$_2$O (B). Top: experimental spectra at 0.57 G modulation amplitude. Middle: simulations. Parameters for the enzyme in H$_2$O: $W = 3.1$ G with three $I = 1/2$ nuclei ($A_{\alpha} = 4.7$ G, $A_{\beta} = 2.35$ G). Parameters for the enzyme in D$_2$O: $W = 3.1$ G with two nuclei $I = 1/2$ ($A_{\alpha} = 4.7$ G). The expected hyperfine contribution (about 0.4 G) of a 2H nucleus, replacing the 1H nucleus, was neglected. Bottom: difference of the experimental minus the simulated spectra.

The distance (r) between an unpaired electron and a satellite nucleus can be estimated from their dipolar (anisotropic) interaction according to:

$$A_{dip} = (\beta_x g_e \beta_n g_n / h) \times (\rho / r^3)$$

In this formula A_{dip} is the dipolar part of the coupling, β_x is the Bohr magneton, g_e is the electron g factor, β_n is the nuclear magneton, g_n is the g factor of the nucleus and h is Planck’s constant.

Assuming an unpaired spin density on the Ni nucleus (ρ) of 1, a dipolar coupling of 2.35 G can be caused by a proton at a distance of 2.3 Å. The results of theoretical studies predict variable spin densities on nickel: one study locates almost all of the unpaired spin density at the Ni ion in the Ni$'$ state (*Niu, 1999*), while another study shows that in this state only about half of the unpaired spin density is located on the Ni ion (*DeGioia, 1999*). In this latter case the estimated distance would be smaller (1.7 Å).

Apart from the oxidised states also the two EPR-detectable reduced states (Ni$_{-}\text{C}-'$ and Ni$_{-}\text{L}'$) were subjected to the same analysis. Similar experiments have already been published (*Van der Zwaan, 1990*) but in these studies a modulation amplitude of 6 G was used. Therefore, we decided to repeat these experiments using a significantly smaller modulation amplitude (2.26 G). This did not reveal any previously unobserved couplings and as reported before, the line narrowing, especially in the Ni$_{-}\text{C}-'$ state, was considerable upon H/D exchange (result not shown). In previous ENDOR studies weak proton hyperfine couplings were observed (*Fan, 1991; Whitehead, 1993*) but due to the intrinsic broadness of the EPR lines these couplings remained unresolved in our spectra, also at higher resolutions.
DISCUSSION

Magnetic properties. The EPR signals for the oxidised and the reduced states for [NiFe] hydrogenases are long known and well studied. Careful analysis however, showed a previously unobserved, small coupling by two nuclei in the \(g \) line of the Ni\(^{2+} \) EPR signal. In the \(A.\ vinosum \) enzyme this coupling is hard to detect as the \(g \) is intrinsically too broad (\(W_g = 4.8 \) G). In the \(M.\ marburgensis \) hydrogenase however, the \(g \) line is narrower, making the coupling more pronounced (Figure 2D). The experiments show that this coupling is not caused by exchangeable protons, since the spectrum of the Ni\(^{2+} \) state of \(A.\ vinosum \) enzyme prepared in D\(_2\)O did not change (Figure 2D).

Enzyme in the Ni\(^{2+} \) state prepared in D\(_2\)O showed a clear splitting at the \(g \) line from two equivalent \(I = \frac{1}{2} \) nuclei (Figure 2C). In H\(_2\)O this coupling was obscured by extra hyperfine splitting of an exchangeable proton making the difference spectrum non-zero (Figure 2C). It was not possible to exchange the incorporated deuterium for a proton when the enzyme was in the oxidised state.

The results of the simulations of the \(g \) line (Figure 3) are in good agreement with a recent ENDOR study on the [NiFe] hydrogenase of \(A.\ vinosum \) in the Ni\(^{2+} \) state (Geßner, 1999). In this study, two large, predominantly isotropic, couplings (12.5 and 12.6 MHz) were attributed to the \(\beta-\)CH\(_2\) protons (H1 and H2) of a bridging Cys residue (Cys533 in the \(D.\ gigas \) enzyme). These values correspond well to the observed splitting of the \(g \) line of the Ni\(^{2+} \) spectrum by H1 and H2 in our study (4.7 G equals a coupling constant of 13.2 MHz at \(g = 2.008 \)). It has been shown by single-crystal EPR on \(D.\ vulgaris \) Miyazaki F hydrogenase that the \(z \)-axis of the \(g \) tensor is oriented towards this bridging Cys residue (Trofanchuk, 2000). Since the \(g \) line of the EPR spectrum of Ni\(^{2+} \) is intrinsically narrow it is possible to detect the coupling in this direction.

Geßner and co-workers for the first time identified a proton (labelled M in (Geßner, 1999) and H4 here) interacting with the unpaired electron on nickel in the Ni\(^{2+} \) state with an estimated coupling constant of \(-6 \) MHz. The ENDOR signals observed at 10 K were located only near the \(g \) line where the signal of the [3Fe-4S]\(^{2+} \) cluster absorbs very strongly; hence, no proper assignment could be made. Our results, obtained at 70 K, at which temperature the [3Fe-4S]\(^{2+} \) cluster does not interfere, suggest that this coupling must be due to an exchangeable proton. Simulation of the \(g \) line of the Ni\(^{2+} \) spectrum required a third proton, coupling with a magnitude of 2.35 G (6.6 MHz at \(g = 2.008 \)), in order to properly mimic the experimental spectrum. The magnitude of this coupling and its anisotropy indicate that the exchangeable proton observed in our experiment is the same one as spotted by ENDOR spectroscopy.

ENDOR studies also identified a much smaller coupling to the Ni-based unpaired electron in the enzyme in the oxidised ready state. This proton (H3), with a coupling constant of 3.5 MHz (approximately 3 MHz anisotropic) could not unequivocally be assigned. The maximum coupling appears near \(g = 2.33 \) which makes an orientation of the dipolar axis close to the \(x \)-axis probable (Geßner, 1999). Fan and co-workers (Fan, 1991) showed that this proton was exchangeable and suggested it to be near to the Ni ion as a bound water molecule or a hydroxide. Geßner and co-workers could not reject this interpretation but favoured the closest of the \(\beta-\)CH\(_2\) protons of the second bridging cysteine residue (Cys68) which is positioned in the direction of the \(x \)-axis (Geßner, 1999). This proton fitted a minimal distance of 3 Å to the Ni site. We do not think, however, that this
proton would be exchangeable. Alternatively, they considered a proton bound to one of the terminal cysteine residues (Cys530 or Cys65) to couple to the $S = 1/2$ Ni site at this frequency. Based on arguments discussed in the following section, we prefer H3 to be a proton on the sulphur of Cys530, which is also directed along the x-axis.

Structural implications. The coupling of an exchangeable proton (H3) in the Ni+ state and the anisotropy thereof, obviously has implications for the active site structures in the oxidised states. In the crystal structure of *D. gigas* hydrogenase, a patch of electron density bridging the Ni and the Fe atom, was assigned to an oxygen species. It should be mentioned that the crystal structure was obtained from a mixture of different enzyme redox states (50% EPR silent, 42.5% Ni+ and 7.5% Ni+). This limits a proper assignment of the bridging oxygen to a certain state. EPR studies of *A. vinosum* enzyme oxidised with O_2 enriched in ^{18}O ($I = 5/2$) had already shown that an oxygen species must be present close to nickel in both the Ni+ and the Ni+ state, since considerable line broadening was observed for both (Van der Zwaan, 1990). However, the exact identity of the oxygen species remained unclear. Possible candidates include O2-, OH- and H\textsubscript{2}O. For the Ni+ state a hydroxide ligand (OH-) would explain both the ^{18}O coupling (Van der Zwaan, 1990) and the coupling of the exchangeable proton found in this study. The anisotropy of the proton coupling suggests that it is positioned in the direction of the z-axis (Figure 4A). In the crystal structure this axis runs from the bridging Cys533 to the empty ligand site facing the gas channel (Trofanchuk, 2000; Montet, 1997). A crystallographic study on the *D. vulgaris* Miyazaki F enzyme showed that this is also the binding place for exogenous CO (Higuchi, 2000b).

An EPR analysis of model compounds (Grove, 1983) supports the theory that the unpaired electron in a low spin 3d7 system with $g \sim 2$ is occupying the d\textsubscript{4} orbital (Wertz, 1972). In this study a series of Ni(III) complexes of the general formula Ni[C\textsubscript{6}H\textsubscript{5}(CH\textsubscript{2}NMe\textsubscript{2})\textsubscript{2}X] with X = Cl, Br or I was analysed. The crystal structure of the iodide complex was determined and showed a distorted, square-pyramidal coordination with a halide in an apical position and two nitrogens, one carbon and one halide in the equatorial plane. The 9 GHz EPR spectrum of the chloro compound ($g_{||} = 2.366, 2.190, 2.020$) showed a four-fold splitting in the g line due to coupling to the apical chloride ($I = 3/2$). EPR spectra of the bromo and the iodo compounds at 35 GHz also showed a four-fold splitting restricted to the g direction (S.P.J., Albracht, D.M. Grove, and G. van Koten, unpublished results). The equatorial halide and nitrogens did not show resolved hyperfine interactions with the unpaired electron on Ni+.

These observations, and the fact that the g line is very close to the free electron value, indicate that the unpaired electron is in an orbital with a large d\textsubscript{2} character i.e. the orbital pointing towards the apical halide. This supports our model of the Ni+ active site in which an OH- is binding at the Ni+ ion in the direction of the z-axis and pointing towards the gas channel, rather than to the Fe atom (Figure 4A). ENDOR experiments with 57Fe enriched enzyme from *Desulfovibrio desulfuricans* also indicated the absence of a bridging ligand in the ready state (Huyett, 1997); no coupling between the Ni-based unpaired spin and the Fe nucleus could be observed. The same study showed that in the Ni+ state of the enzyme from *D. gigas*, the electronic contact between the Fe and the Ni was a little stronger, since a weak coupling (~1 MHz) was observed.
From the magnitude of the anisotropic coupling the distance from the proton to the unpaired electron can be calculated. Assuming a completely anisotropic coupling of 2.35 G (6.6 MHz) we estimate a Ni-H distance of 1.7-2.3 Å. According to extended X-ray absorption fine structure (EXAFS) measurements on the *A. vinosum* enzyme, the Ni-O distance in the Ni⁺ state is 1.86 Å (Davidson, 2000). On average O-H bonds are 1.0 Å long. Stereochemically these bond lengths require a bend coordination of the OH⁻ to the Ni with a Ni-O-H angle of about 100° to fit the estimated distance (Figure 4A). This is also in line with the weak ¹⁷O interaction in the z-direction (Van der Zwaan, 1990); a much stronger interaction would be expected for a ¹⁷O nucleus oriented along the z-axis. An exchangeable proton at this position in the Ni⁺ state is unlikely since in H₂O and D₂O the EPR spectra are the same and the splitting of the g_e line by the β-CH₃ protons of the Cys533 is almost resolved. On basis of the crystal structure data we opt for an oxygen species in the bridging mode in the unready state (Figure 4B). In the crystal structure (assuming to represent mainly the oxidised and reduced, unready states, Volbeda, 1995) the oxygen is bridging in an asymmetric manner (Volbeda, 1996a), the Ni-O distance being 1.7 Å and the Fe-O distance 2.1 Å (Fontecilla-Camps, 1999). However, final proof can only be obtained by comparing the crystal structures of enzyme in the Ni⁺ and Ni_u state. This work is currently in progress.

![Figure 4](image_url)

Figure 4. Proposed active site structure for *A. vinosum* [NiFe] hydrogenase in the oxidised state. (A) Ready enzyme. (B) Unready enzyme. The exact identity of the bridging oxygen ligand can not be postulated based on the present data. Protons shown in bold can be exchanged in active, reduced enzyme. Numbering of the S atoms of the Cys residues is as in the *D. gigas* crystal structure (Volbeda, 1995).

After discussing the nature of the coupling protons H1, H2 and H4 we will now turn to H3. This shows a small (3.5 MHz), rather anisotropic, coupling in ENDOR spectra (Gefner, 1999; Fan, 1991) and the proton causing it (H3) could be exchanged after activation and reoxidation of the enzyme (Fan, 1991). Electron spin-echo envelope modulation (ESEEM) measurements also showed a coupling of an exchangeable proton after reoxidation to the Ni⁺ state (Chapman, 1988). Based on these literature data and the active site models derived from this study, we favour the proton H3 on one of the terminal Cys thiols. The exchangeability of this proton in reduced, active enzyme implies that (de)protonation of this ligand might play a role in catalysis. On the basis of the different biochemical properties of [NiFeSe] hydrogenases compared to [NiFe] hydrogenases we propose that Cys530, which is replaced with a selenoCys residue in [NiFeSe] hydrogenases, acts as the proton-accepting base in catalysis (Garcin, 1999). This could be a proton which can be exchanged in both Ni_u and in Ni⁺ upon reduction and reoxidation. EPR is not sensitive enough to sense a hyperfine coupling
of this H3 proton (this study). ENDOR measurements on A. vinosum [NiFe] hydrogenase in the pure unready state prepared in H2O and D2O might yield more information about the nature of this proton.

Reactivity of oxidised enzyme. The different active-site structures for enzyme in the unready and the ready states provide a possible basis to understand the differences in reactivity. In the ready state the Fe atom is five coordinate so dihydrogen can bind at the sixth site. We assume that this H2 is subsequently used to reduce the Ni ion and the 3Fe cluster. This changes the pK of the Ni-bound hydroxide, which becomes protonated and is removed from the active site as water. A second H2 then binds to the Fe site, inducing the oxidation of NiII to NiIII (the Ni-C state). This state can rapidly react with another H2 to form the fully reduced Ni-SR state (Coremans, 1992a; Happe, 1999).

In the unready state a bridging oxygen species forms the sixth ligand to iron, thus preventing the binding of dihydrogen to iron and subsequent activation. We envisage the very slow conversion of the unready state to the ready state, which occurs under mildly reducing conditions at the one-electron reduced, EPR-silent level (Surerus, 1994) as the rearrangement of the oxygen species bound to nickel from a bridging to an end-on position. This transition requires elevated temperatures for the A. vinosum enzyme (40 to 50°C).

Acknowledgements: The investigations were supported (in part) by EU grant no. BIO4-98-0280 and by the Netherlands Organisation for Scientific Research (NWO), division for Chemical Sciences (CW). W. Roseboom is kindly acknowledged for general technical assistance and for the purification of the A. vinosum hydrogenase. Dr. R. Hedderich (Marburg, Germany) is acknowledged for the kind gift of the M. marburgensis hydrogenase.