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Chapter 2

Dynamic interbank network

analysis using latent space models*

2.1 Introduction

There has been a growing interest in the study of networks in economics over the last
years. Specifically in finance the accelerated loss of confidence in financial markets
following the failure of Lehman Brothers in 2008 has shown the importance of under-
standing the network of linkages between financial institutions. The lack of knowledge
of counterparty exposures and how the contagion would spread throughout the system
during the crisis have led policy makers to adopt a large set of financial reforms to
address these and other vulnerabilities, both at the international and domestic levels
(Claessens and Kodres, 2014).

Since financial institutions are highly interconnected, network theory provides a
useful framework for the analysis of the financial system. Interconnections may be
directed due to banks’ claims on each other or may arise indirectly when banks hold
similar portfolios or share a common pool of investors or depositors. The role of these
interconnections in the propagation of shocks in financial networks has been analyzed
by a growing literature. Allen and Gale (2000) and Freixas et al. (2000) have shown
how contagion depends on the structure of the interbank network. More recently, Ace-
moglu et al. (2015) showed that for a small shock hitting the system a more connected
financial network enhances financial stability. On the other hand, a less connected fi-
nancial network is preferable in the case of a large shock since interconnections serve as

a mechanism for shock propagation. Many other theoretical or simulation-based works

*This chapter is co-authored with Cees Diks and Marco van der Leij from the University of Ams-
terdam and Iuri Lazier from the Central Bank of Brazil.
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CHAPTER 2. DYNAMIC INTERBANK NETWORK ANALYSIS

have studied the relevance of the various possible channels of contagion in the prop-
agation of shocks and the implications for financial stability!. The work in this area
usually corroborates the “robust-yet-fragile” tendency of financial systems described
by Gai and Kapadia (2010), in which the probability of contagion may be low but,
when problems occur, the effects can be widespread

The statistical challenge in analyzing network data is to describe the potential
dependence among nodes. For instance, in social network data the probability of a tie
between two individuals increases as the characteristics of them become more similar
(homophily). Equally important is the heterogeneity at the individual level, reflected
in differences in observed characteristics, which plays an important role in the creation
of new links. In addition, a main concern is the unobserved factors that affect the
likelihood of forming a link and may bias the results (see, e.g., Fafchamps et al., 2010).

In this chapter, we present a model to handle dynamic network data with directed
binary edges based on the latent space approach?. The model was originally introduced
by Hoff et al. (2002) for static networks and later extended by Krivitsky et al. (2009) to
account for clustering and homophily which is often observed in network data. After
that, Sarkar and Moore (2005), Durante and Dunson (2014) and Sewell and Chen
(2015) proposed latent space models for dynamic networks.

In this model, the latent space refers to a low dimensional Euclidean space of
unobserved characteristics that affect link formation. The model assumes that the
presence of a link between two banks is independent of all other links in the system,
given the unobserved positions in the latent space and observed characteristics of the
nodes. FEach node has a position in this space and the closer two nodes are, the
more likely they will form a link. Although the interdependence between dyads is
not explicitly parameterized, in the latent space model they are represented by latent
variables. For this reason, the model can account for higher-order dependencies, such
as reciprocity and transitivity, which are usually present in network data. So, the
observation of ties i — 7 and 7 — k suggests that the nodes i, j and k are not too
far apart making the existence of ties j — i (reciprocity) and i — k (transitivity)
more probable. Estimation of the latent positions and the parameters of the model is
done within a Bayesian framework, which is particularly suitable for the analysis of
the model.

1See Hiiser (2015) and Glasserman and Young (2016) for recent reviews of the extensive literature
on channels of contagion in financial networks.

2The “latent space” has been used in economics to account for unobserved homophily that might
affect the formation and behavior of social networks (Goldsmith-Pinkham and Imbens, 2013 and
Graham, 2014). Iijima and Kamada (2017) develop a network formation model in which the benefit
and the cost of link formation depend on the social distance between agents.



2.1. Introduction

The aim of the work is to use the dynamic latent space approach of Sewell and
Chen (2015) to model monthly networks of directed interbank linkages. The latent
space model has been mostly used for modeling social networks but it has not been
applied to the study of financial networks so far. Although financial exposures are
naturally represented by a weighted network, the choice of using a directed network
representation is motivated by our aim to evaluate the ability of the model to charac-
terize the basic structure of the network, which is the presence or absence of a link.

In this dynamic model each node has a temporal trajectory in the latent space.
Hence, we expect to have a better understanding of how the network evolves over
time and the behavior of individual banks instead of conducting separate analyses for
each network or averaging graph statistics. We extend the model to include in the
observation equation covariates that measures characteristics of the pair of banks and
we are able to investigate how these pair-specific measures as size, liquidity, etc., affect
the probability of forming a lending connection.

The motivation for using a dynamic network model is that papers usually consider
the network structure of banks’ exposures as fixed. They do not consider strategic
actions that other banks may take to reduce the exposure to a bank in distress or
liquidity hoarding in moments of increased uncertainty about the health of the financial
system. For example, Afonso et al. (2011) examine the impact of the financial crisis of
2008 on the U.S. interbank market and show how banks have become more restrictive
in their lending operations after the Lehman Brothers’ bankruptcy. Squartini et al.
(2013) show the changes in the topology of the Dutch interbank network over the period
1998-2008. Despite the importance of contributions, a limited number of empirical
papers explore the dynamics of financial networks. Most of them measure certain graph
statistics over time instead of modeling the network dynamics in order to understand
the changes in the network topology (Giraitis et al., 2016)®. The reason for this is the
greater complexity in modeling dynamic network data given the dependence structures
of networks observed over discrete time intervals. Further motivation to use a dynamic
network model is that currently central bank authorities collect a huge amount of
data on bilateral exposures of financial institutions or they are able to derive them
from payment system records?. Using the increasing availability of longitudinal data
researchers can model how the network evolves over time to make inference on its

dependence structure.

3For instance, Craig and von Peter (2014) track the number and composition of banks in the core
and periphery on a quarterly basis as evidence of tiering in the German banking system. They use
the block modeling approach.

4The algorithms to extract the information from large value payment systems are usually based
on the work of Furfine (1999) and later refinements.



CHAPTER 2. DYNAMIC INTERBANK NETWORK ANALYSIS

We apply this methodology to analyze two different datasets: the unsecured and the
secured interbank lending networks of Brazilian banks. We analyze these two networks
separately since banks face distinct risks when lending in these markets. In unsecured
lending loans are not collateralised so lenders are directly exposed to losses in the case of
borrowers default. In secured lending, which in our case is represented by repurchase
agreements (repo) collateralized with government bonds, the loss is limited by the
collateral value. In the former, counterparty risk plays a key role (see, e.g., Afonso
et al., 2011) while in the latter the quality of collateral is an issue in moments of distress
(see, e.g., Krishnamurthy et al., 2014). Despite the differences in risk assessment, we
show that graph statistics of the two networks are quite similar.

We estimate the model with the latent space but an important question is whether
it improves the model’s goodness-of-fit. The latent space is expected to account for
the unobserved bank attributes that affect the link formation and improve the model’s
fit. Hence, we run a model in which the probability of a tie depends only on observed
covariates x;;; and a second one in which the latent space is included. The former
model is simply a logistic regression model in which directed ties are the dependent
variables. We assess the in-sample and the out-of-sample link predictions of the two
models. In addition, we evaluate the adequacy of them by comparing some selected
graph statistics calculated for the observed data with their distributions obtained from
a large number of networks simulated according to the fitted model (see, e.g., Hunter
et al., 2008; Durante et al., 2017). If the simulated network does not resemble the
observed network for a particular statistic, it is an indication of the model’s lack of
fit. We use this procedure to assess the model’s fit considering a set of graph statistics
which are believed to represent important structural properties of interbank networks
such as degree distribution, reciprocity and assortativity.

Our main results show that the model which incorporates observed bank’s char-
acteristics and a latent space to account for the unobserved ones is able to capture
some features of the dyadic data such as transitivity. We show that the inclusion of a
low-dimensional latent space is essential to account for dependencies that exist among
nodes. Further, the distribution of graph statistics for the simulated networks based
on the model with a latent space are much closer to the observed values when com-
pared to the model without a latent space. On the other hand, the model in which the
probability of forming a tie depends only on observed characteristics of banks has a
poor fit. Link predictions are much worse and the distribution of most network statis-
tics for the simulated networks are far from the observed values. Therefore, models
that do not incorporate dependencies in the analysis of network data will suffer from

misspecification, which may lead to invalid conclusions.



2.2. The model

Lastly, the latent space approach is related to other statistical models for the anal-
ysis of network data. The methodology for dynamic network analysis is less developed
since most of the models are for modeling static networks®. However, given the impor-
tance of the subject, statistical models for the analysis of longitudinal network data are
emerging. Examples of dynamic network models are the stochastic actor-based model
(Snijders and Steglich, 2015) and the extension of the Exponential Random Graph
Model (ERGM) for modeling dynamic networks (Hanneke et al., 2010). The former
assumes that the objective function depends on preferences for certain types of social
structures, such as reciprocated dyads or transitive triads, while the latter depends
on counts of specific network structures such as edges, triangles, k-stars, etc. Other
methodology related to the latent space approach is the mixed membership stochastic
block model (Xing et al., 2010) which allows each node to belong to multiple blocks
with fractional membership. In general, the models assume a continuous or a discrete
Markov process to represent the network dynamics. However, the first two model-
ing approaches assume a homogeneous representation of the network behavior, while
the last ones allow for nodal heterogeneity in model parameters. Finally, a different
approach combines agent-based modeling and the literature on strategic network for-
mation to gain some economic intuition on the network formation process. The utility
functions of the banks are defined at the start and network formation follows a game
theoretical approach (see e.g. Blasques et al., 2015).

The rest of the chapter is organized as follows. Section 2.2 describes the latent space
model for dynamic networks. Section 2.3 provides an explanation of the Bayesian es-
timation of model parameters. Section 2.4 describes the data on unsecured interbank
exposures, repo transactions and bank variables. In Section 2.5 we analyze the two
dynamic networks and report the main results and in Section 2.6 we discuss the im-

portance of the latent space. Finally, Section 2.7 concludes.

2.2 The model

In this section we describe the dynamic latent space approach of Sewell and Chen
(2015) for modeling the interbank network. The borrowing and lending relationships
of the interbank market can be represented by a graph G, = (N, &;) where A is the set
of all nodes and & is the set of edges at time t € 7 = {1,2,...,7}. The number of nodes
which represent financial institutions is n = |A|. It will be assumed that &; consists of

5Some models are intended for static networks but the processes for link creation or modification
are dynamic. Examples are the Erdos-Renyi random graphs, preferential attachment and small-world
models. See Goldenberg et al. (2009) for a survey of static and dynamic network models.
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directed edges representing whether or not a lending or a borrowing relationship exists

between two banks at time ¢.

Each node i has an unobserved position in a p-dimensional Euclidean latent space
RP. Let z; represent the p-dimensional vector of the i** node’s latent position at time

t and Z, is the n x p matrix whose *"

row is z;. The n x n square matrix Y, = {y;;:}
is the adjacency matrix of the directed network observed at time ¢ where y;;; = 1 if
bank ¢ has a credit exposure to bank j at time ¢ and 0 otherwise. There are also a

vector x;;; and a n x n x d array X; of observed characteristics of the dyads.

It is assumed that the latent node positions follow a Markov process. It is also
assumed that the observed graph at time t is conditionally independent of all other
graphs, given the latent positions and dyadic-level covariate information at time t¢.
These assumptions lead to the representation of the temporal series of graphs as a

state space model given in terms of densities by:

(2.1) Yth(Yt|Zt7Xt’ﬁ)

(2.2) Zy~ g(Z4|Zy-1,7p)

for t =1,2,...,T, where ¥ and 3 are sets of model parameters. Equation (2.1) is the
observation equation that relates the observed graphs Y, to the latent state variable
Z, representing the positions of nodes in a low dimensional Euclidean space. Equation
(2.2) is the state transition equation that governs the time evolution of the unobserved
latent state. A graphical representation of the dependencies between different states

and observations is shown in Figure (2.1).

Xing et al. (2010) and Sewell and Chen (2015) assume that the evolution of the
latent node positions follows a random walk. They show that even this simple model
provides a better representation of the data than a static model that ignores time
dependence between networks. Therefore, the initial distribution of the latent node

positions and transition equation for ¢t = 2,3, ..., T, are given by

(2.3) 7(Zap) = [ [ MVN,(2:1[0, 7°T,)

i=1

(2.4) T(Z|Zir, ) = [ [ MVN, (zi|zi(1—1), 0°L,),

i=1



2.2. The model

Z:~9(Z\Z:_1, )

° e |

Yi~f(Y|Z, X, 0)

Figure 2.1: Graphical representation the Markovian dependencies between states Z; and
observations Y.

where I, is the p x p identity matrix, MVN,(z|u, 3) denotes the p-dimensional mul-
tivariate normal probability density function with mean g and covariance matrix 3
evaluated at z.

The logistic regression model is a convenient parameterization for the link prob-
ability (Hoff et al., 2002). These authors take a conditional independence approach
to modeling by assuming that the probability of a link between two nodes is condi-
tionally independent of all other links, given the latent positions and the observed

characteristics of the dyad,

eXP(yijt”h‘jt)
2.5 P(y;is = 1|2, Zj¢, X5 =
( ) (yljt ‘ its gt zgtaﬁ) 1 i eXp('rh']'t)
In general, the logit® of the link probability in latent space models is written as a
linear function of covariates and a function of the distance of latent positions. Using
the original parameterization of Hoff et al. (2002) for the dynamic network case, we

have’
(2.6) nije = logit(P(yije = 1]-)) = Bo + B Xuijr — dije,

where the constant controls the overall density of the network, 3 is a vector of unknown

parameters, x;;; is a d-length vector of dyad specific covariates and d;j; =|| 2 — zj: ||

Slogit(p) = log(p/(1-p))-

11



CHAPTER 2. DYNAMIC INTERBANK NETWORK ANALYSIS

is the Euclidean distance between nodes ¢ and j within the latent space at time ¢. Hoff
et al. (2002) call this formulation the distance model.

The distance model (Equation 2.6) has a simple interpretation. The likelihood of
a tie between i and j is a function of banks’ observed and unobserved characteristics
that might affect network formation. Examples of observed bank characteristics can be
asset size, deposits or available liquidity. Unobserved latent characteristics can be, for
example, private information about counterparty risk or the existence of a relationship
between two banks in other markets which affects the probability of a link in the
observed network. In this setting, the latent space can be interpreted as a characteristic
space where banks that are closer together have a higher probability of forming lending
or borrowing relationships. Banks’ positions in this space can help identify groups of
banks that are similar to each other in terms of lending and borrowing behavior, after
controlling for the explanatory variables.

In Equation (2.6) we included only observed variables of the pair of banks and
their positions in latent space to account for the unobserved characteristics that affect
link formation. As we show in Sections 2.4 and 2.5 the links between banks are quite
stable over the period of analysis, and macroeconomic variables such as GDP growth do
not seem to affect the link formation process. One explanation could be the different
frequency of observation of the variables. The networks are based on monthly data
that are end-of-month exposures or aggregation of daily data; to capture the effect of
low frequency data on the formation of links we may need to analyze longer periods.

Finally, the likelihood of the conditional independence model is

T
eXp 1 1,
27)  P(YirlZor, Xir, B) = [T TTPWeielzi, 20 %150, B) = HH 1+ ey]m]t
t=1 i#j t=1 i#j xp n”t

2.3 Estimation

A Bayesian approach is used to obtain estimates of the latent space positions and of

the unknown parameters simultaneously. The posterior distribution

(2‘8) ™ (ZI:T7 1/’7/6‘Y1:T>X1:T) 5

where ¥ = (72, 0?), is sampled using the Metropolis-Hastings algorithm within Gibbs
sampling (Geweke and Tanizaki, 2001).
One problem of the model is that the likelihood is a function of the latent positions

only through their distances. However, the distance is invariant under reflection, ro-

12
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tation and translation of the latent positions and, consequently, for each n X p matrix
of latent positions Z, there is an infinite number of other positions given the same
log-likelihood, i.e., log P(Y|Z:, ...) = log P(Y}|Z;, ...) for any Z; that is equivalent to
Z; under the operations of reflection, rotation and translation.

To resolve the problem of the non-uniqueness of the estimates, Hoff et al. (2002)
perform a Procrustean transformation on Z;. The goal is to transform a given matrix
to be as close as possible to the target matrix by a combination of reflection, rotation
and translation”. TFirst, we choose the initial latent positions to be the (nd) x T
target matrix Zo. Then, after each iteration of the MCMC algorithm the coordinates
of Z = (Z),...,Zy) are transformed to be as close as possible to the corresponding
coordinates of Zy. The transformation does not change the distances nor the likelihood
but it approximately fixes the location of Z and makes MCMC iterations comparable.

We use standard prior distributions and the values of the prior hyperparame-
ters are set to make the priors weakly informative. The prior distributions for the
parameters are set as follows: 72 ~ 1G(v,/2,1,€2/2), 0? ~ 1G(v,/2,v,£2/2) and
B ~ MVN(ug, 3g), where “IG” and “MVN” denote the inverse gamma and the multi-
variate normal distributions, respectively. The inverse gamma distribution was chosen
as it is a conjugate prior for the unknown parameters 72 and 2.

The values of prior hyperparameters (v,,&2,v,, &2, pg, ) are set based on the
suggestions of Sewell and Chen (2015). In general, we use relatively diffuse prior
distributions. The shape and scale parameters for 72 were set to low values in order to
have a weakly informative prior. The same procedure was used for o2. In addition, the
value of £2 was set to be equal to the initial estimate of 72 (Equation 2.18). The prior
for B has zero mean and large variance. Nonetheless, we found that the estimation is
robust to changes in the values of prior hyperparameters and the convergence of the

parameters is not affect.

2.3.1 Posterior sampling and the MCMC algorithm

We implement a Markov Chain Monte Carlo (MCMC) algorithm to sample from the
posterior to obtain estimates of the latent positions and other unknown parameters
of the model®. The model parameters 72 and ¢? are sampled directly from their full

conditional distributions using the Gibbs sampler while conditional distributions which

"Formally, the Procrustean transformation of Z using Zg as the target matrix solves the problem:
argmin,.g tr(Zo — TZ) (Zo — TZ),

where T is a set of reflections, rotations and translations.
8The algorithm is based on the R codes of Sewell and Chen (2015).

13



CHAPTER 2. DYNAMIC INTERBANK NETWORK ANALYSIS

do not have closed forms are sampled using a standard Metropolis-Hastings (MH) algo-
rithm. The conditional distributions used in the MH steps are given in Appendix 2.A.1
where we derive in detail the conditional distribution of Z; as well as the conditional
distributions of the latent position z; and parameters (72,02, 3).

In order to reduce the time for the Markov chain to get to stationarity, we seek rea-
sonable estimates for the initial values of the latent positions Zi.r and the parameters
72, 02, and B. The procedure to obtain the starting values is detailed in Appendix
2.A.2.

Given the starting values of Z.p, 72, 02 and 3 and current values at scan s of the
Markov chain, the MH algorithm generates a new set of parameter values as follows:

1. Fort=1,...,T and for i = 1, ..., n, sample zl(fH) using a MH step with a normal

random walk proposal distribution.

2. Sample B¢ using a MH step with a multivariate normal random walk proposal

distribution.
3. Sample 72¢+1 from its full conditional distribution.

4. Sample 2tV from its full conditional distribution.

Finally, the variance of the proposal distributions are tuned automatically to achieve

acceptance rates of 35% based on the algorithm proposed by Haario et al. (2005).

2.4 Data

The Central Bank of Brazil collects and processes data of exposures between financial
institutions from different sources as credit register, securities custody and settlement
systems and central counterparties of derivatives. The dataset built by the central
bank includes exposures of banks, credit unions, securities dealers and other financial
institutions.

We restrict our analyses to exposures between approximately 135 banking institu-
tions, from a total universe of over 1,500 banking and non-banking financial institutions.
This sample does not lose relevance, since non-banking financial institutions account
for only 2.7% of the financial system’s total assets, as of December 2014. Among more
than one hundred domestic and foreign banks, six large institutions account for 78.4%
of the financial system’s total assets. As a consequence of banking concentration, in-

terfinancial assets of banks account for 98.0% of the interfinancial asset of the financial

14



2.4. Data

system. It is worth noting that exposures are measured on a consolidated basis thus
the term bank refers indistinctly to an individual bank or to a banking group.

In our study we analyze the networks of unsecured interbank exposures and repo
transactions from July 2012 to June 2013 (12 months). The unsecured interbank data
are available on a monthly basis and consist of short and long-term exposures between
banks. Exposures are measured as end-of-month gross values. There is no netting
between exposures of banks i and j. These exposures arise mainly from interbank
deposits, credit, loan purchase agreements and interbank onlending®. A smaller fraction
of exposures are due to certificates of deposit, OTC derivatives such as swaps, and
holdings of securities issued by other financial institutions.

The data on repurchase agreements (repo) with government bonds as collateral is
from Selic, the system for settlement and custody of government bonds managed by the
Central Bank of Brazil. Excluding transactions with the central bank, overnight repos
account, for almost all operations between financial institutions. There is no netting
between exposures of banks i and j or between the amount lent and the collateral value.
Data are available on a daily basis but we have chosen to analyze monthly aggregated
networks. To do so, for each month we summed the daily exposures of each pair of
banks. The data aggregation is necessary since the MCMC algorithm cannot handle
daily network data due to the computational burden associated with the estimation of
many parameters. Besides, aggregated networks are expected to provide a better view
of the interbank market structures as the randomness of daily networks may result in

misleading inferences (Finger et al., 2013).

2.4.1 The topology of the Brazilian interbank networks

Some characteristics of the Brazilian interbank network are analyzed in other works
(e.g. Cajueiro and Tabak, 2008; Cont et al., 2013; Tabak et al., 2014; Silva et al.,
2015). The papers differ in the financial instruments used to build the networks and
the sample time span. Even so, they have found that the Brazilian interbank networks
are quite similar to networks for other countries. For instance, the networks are sparse
and show a core periphery structure while the degree distribution seems to follow a
power law.

Table 2.1 presents the evolution of some network statistics of the unsecured and the
repo interbank networks. In Appendix 2.A.3 we provide an explanation of the network
statistics used in the table. Our sample is from July 2012 to June 2013 but since the

variation between months is low, we present the results for only six different months.

90nlending exposures arise when banks lend money borrowed from other banks.

15
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The in-degree of a node 7 is the number of edges terminating at it and out-degree
is the number of edges originating in node i. In our interbank network they represent
respectively the number of creditors and debtors of a bank. It is possible to see by the
coefficient of variation (standard deviation of degree/mean degree) that the out-degree
distribution of the unsecured network is more dispersed than the in-degree distribution
while for the repo network it is the contrary. The maximum in/out-degrees of the
unsecured network are 68 and 107, respectively, and 82 and 42 for the repo network.

The density of a network is the ratio of the number of existing edges to the number
of possible edges. Both networks are sparse as the mean density is 0.10 or lower.
Transitivity or clustering coefficient is the probability that adjacent nodes of a node
are also connected. Reciprocity is the proportion of the total number of reciprocated
edges to the total number of edges. Transitivity and reciprocity are high in both
networks and almost constant.

The average path length is the average length of the shortest paths between nodes
while the diameter is the length of the longest path in a graph. It is possible to see
that the unsecured network exhibits smaller distances between nodes. Assortativity is
the correlation of degrees in adjacent nodes. The degree correlations are negative in
both networks, showing that low degree nodes have a higher tendency to be connected
to high degree nodes. Finally, it can be seen from the tables that the networks are

quite stable since network statistics show little variation over the period of analysis.

2.4.2 Banks’ observed characteristics

We select a set of covariates that may have an effect on the link formation process. Some
of these covariates were used by Cocco et al. (2009), Affinito (2012) and Afonso et al.
(2014) to investigate the existence of lending relationships in the interbank market. As
found by these papers, we expect that some observable characteristics of banks which
we use as similarity or dissimilarity measures on each pair of institutions will have an
effect on the formation of ties.

We use monthly balance sheet information which are published by the Central Bank
of Brazil'® to construct the covariates of bank characteristics. In particular, we include
bank size defined as the natural logarithm (log) of total assets. Bank size is expected
to explain much of the connections in the data since large institutions are usually in
the core of the network acting as money center banks (Craig and von Peter, 2014).

In addition, the analysis of the data shows that large banks have more connections

10The banks’ balance sheet are available at the central bank site https://wwwé.bcb.gov.br/fis/
cosif/cosif.asp

17



CHAPTER 2. DYNAMIC INTERBANK NETWORK ANALYSIS

Table 2.2: Summary statistics of covariates from July, 2012 to June, 2013.

Name Definition Obs. Mean St. dev. Min  25% 7%  Max

Size log(total assets) 1476  14.675 2.371 9.871 12.903 16.114 21.407

Credit credit /total 1476  0.374  0.281 0 0.102 0.579  0.967
assets

Securities securities and 1476  0.198 0.213 0 0.057 0.249  0.969
derivatives/total
assets

NPL non performing 1476  0.022  0.025 0 0.002 0.032 0.292
loans/outstanding
loans

Deposits ~ deposits/total as- 1476  0.326  0.230 0 0.119 0.502 0.831
sets

than smaller banks and they lend more than they borrow from other institutions. We
use credit to total assets and securities and derivatives to total assets as measures of
asset structure which reflects banks’ business models. We also include the ratio of non
performing loans (loans that are overdue for more than 90 days) to outstanding loans
and deposits to total assets. The former could be an indication of asset quality and

the latter of funding stability.

Table 2.2 presents descriptive statistics of the variables. The mean, standard devi-
ation and minimum, maximum, 25% and 75% values were computed considering the
whole sample. The heterogeneity in banks’ characteristics is huge. For instance, the
largest bank is 100,000 times bigger than the smallest one in terms of total assets. In
the sample there are a few retail banks with a large base of depositors and many small

banks which serve mainly small business.

As a measure of similarity or dissimilarity on observed characteristics of banks ¢ and
Jj, we use the absolute value of the difference between the nodal covariates x;; and z;z,
i.e., the vector of covariates x;j is a function of x;;; = |x;; — x;¢|. Hence, this model is
symmetric, i.e., P(y;;e = 1|-) = P(yje = 1]-), and we expect that it can account for the
high reciprocity observed in the network data. We have tested other functional forms
for the dyad covariates as the difference between nodal variables or the log(x;/X;1),

however these models do not fit the data well.
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2.5 Results

2.5.1 Unsecured network

We analyze the Brazilian unsecured interbank market from July 2012 to June 2013.
We have T' = 12 time periods and n = 123 banks which accessed the market during this
period. The networks are constructed based on end-of-month gross exposures which
arise from bank 4 claims on bank j. Thus, we have twelve 123 x 123 binary adjacency
matrices where the edge ¥;;; of the matrix Y, represents a exposure of bank 4 to bank
7 at time t.

We estimate the distance model (Eq. 2.6) and initialize the latent positions and
parameters of the model as described in Appendix 2.A.2. The initial values of 7¢
and o2 were set to 0.1906 and 1, respectively. The prior hyperparameters were set to
Vp =1y =2, & =13, & =0.001 and (ps, X5) = (0,2-1).

One issue in the latent space approach is the selection of the dimension of the
latent variables z;. There is no automatic procedure for learning the dimension of
the latent space but we would like to have a simple graphical representation of it.
As visualization of the network is one possible motivation for using the latent space
approach to modeling networks, p is usually set to 2 but higher dimensions may be
needed to represent the network adequately. Hoff (2011) uses the Deviance Information
Criterion!! (Spiegelhalter et al., 2002), which can be computed from the output of the
MCMC, to find the rank for reduced-rank decomposition of an array. Following the
same procedure, we evaluate models having dimensions of p = {2, 3,4} and select the
optimal dimension based on the computation of the DIC.

The model with 4 dimensions achieved the minimum DIC. We examined the fit of
models having higher dimensions but the results had roughly the same performance at
a cost of estimating n more parameters per additional dimension.

Initially, we fit the model with p = 4 without covariate information on the banks’
characteristics. We run 100,000 iterations of the MCMC algorithm with a burn-in
period of 20,000 iterations. Visual inspection of the trace-plots shows that the length
of the burn-in is sufficient for convergence. The Geweke (1992)’s convergence diagnostic
for the equality of the means of the first and last part of the chain yielded Z-scores
of -1.49, -1.26, 0.83 for 72, 02 and 3y, which indicate convergence. Posterior values of

model parameters 72, o2 and 3, are kept every 20 iterations to reduce autocorrelation of

HThe DIC is intended as a generalization of Akaike’s Information Criterion (AIC) for comparing
complex models in which the number of free parameters is not clearly defined. It is defined as
DIC = D+pp, where D = —2E(log p(y|0)), pp = D-+21log p(y|0) is the effective number of parameters
and 0 is the posterior mean of parameters.
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Figure 2.2: MCMC trace plots, autocorrelation functions and posterior distributions of 72,
o2 and f for the unsecured network data. Vertical dashed lines show the mean
of the posterior distributions of the parameters.

the samples. The MCMC trace plots, autocorrelation functions and marginal posterior
distributions of 72, 02 and S, are plotted in Figure (2.2). The thinning of the Markov

2 and the 3y samples. Although

chain was able to reduce the autocorrelation of the 7
the autocorrelation of ¢ is still high, we initialized the chain from different values and
the results show that it converges.

Next, we investigate how bank characteristics as size, credit, deposits, etc., affect
the probability of a pair of banks forming a connection. We estimate seven different
specifications of the model including the following dyadic covariates: Size, Credit, Se-
curities, NPL and Deposits. The fit of the model’s different specifications is compared
in three ways. First, we assess how well the model explains the data used to estimate
the model. We obtain in-sample link predictions of Y;.7 using the posterior means of
model’s parameters and latent positions as inputs for the observation equation and then
we compute the area under receiver operating characteristic curve (AUC). The ROC
curve plots the true positive rate (sensitivity) as a function of the false positive rate
(specificity); the closer AUC is to 1 the better is the fit, whereas random predictions
correspond to an AUC of 0.5. In addition, we compute the AUC of the out-of-sample
predictions of the model. To this end, we compute one step ahead predicted probabili-
ties and compare the results to the observed network at time 7'+ 1. The out-of-sample
predictions are based on the model estimate using networks observed from July 2012
to June 2013 and compared to the network observed at July 2013. Finally, the fit of
each different specification is assessed based on the computation of the DIC.

Table 2.3 shows the coeflicients and AUC and DIC values for the model estimated
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including a different set of variables. The AUC values for the in-sample predictions
show that with the exception of the models without covariates (AUC value of 0.8672)
and without the covariate Size (AUC value of 0.8729) the models fit the data quite
well. The AUC values are on average 0.92. The AUC values of the out-of-sample pre-
dictions are also high, showing that the model provides good one step ahead predicted
probabilities as well. It is important to note that the improvement of the model’s fit
with the inclusion of other variables in addition to Size is not significant. The AUC val-
ues of the in-sample and out-of-sample predictions for specification (2) which includes
only the variable Size and specification (6) which includes all variables are almost the
same. When we compare the DIC values of the models, we see that the model without
covariates has the worst fit (the highest DIC value). Although the difference of the
DIC values are not high, the model with all covariates included excepting Deposits has
the lowest DIC.

The estimate for the coefficient of Size in specification (2) is 0.82 (0.02). The
positive value implies that it is more probable for banks to have ties when the difference
in their sizes is large compared to ties between banks of similar sizes. The coefficients
of other variables (Securities, NPL and Deposits) are negative, implying that there is
a preference for ties between banks of similar characteristics. The coefficient of Credit
is negative with the exception of the coeflicient estimated in specification (6) although
the highest posterior density interval is between zero. The inclusion of other variables
does not improve the fit of the model significantly, so we proceed our analyses based

on the model that uses only covariate information on the size of the banks.

In order to allow the visualization of banks’ positions, Figure (2.3) shows the pos-
terior means of banks’ latent positions for the first two dimensions. The figure shows
the positions in two different dates: July 2012 (circles) and June 2013 (triangles). The
six large institutions, which are considered domestic systemically important banks, are
positioned near to each other and close to the center of the figure (gray symbols), while

small banks with few connections are on the border.

Figure (2.4) shows boxplots of the distances each bank traveled in the latent space
during the eleven month transitions. Sewell and Chen (2015) use the boxplots of
the distance to evaluate the stability of the network. It can be seen that the moves
of banks corresponding to each transition fall in a similar range implying that the
dynamics of the network are nearly constant throughout the twelve months. Transitions
to December 2012 and to January 2013 implied larger alterations in banks’ positions,
which can be explained by changes in the amount lent. The set of outlier banks changes

over the months but four small foreign banks are outliers in six months.

21



CHAPTER 2. DYNAMIC INTERBANK NETWORK ANALYSIS

&
S}
s Y ”
ﬂn@ Jﬁ& & Ly g &
o & 48 a o, Loa A

p@

e ____8

Figure 2.3: Posterior means of latent banks’ positions for unsecured network data. Circles
are positions in July, 2012 and triangles are the positions in June, 2013. Gray
symbols are the positions of the six largest banks.

2.5.2 Repo network

In this section we analyze the data on repo agreements collateralized with government
bonds. The daily data of overnight repo transactions from July 2012 to June 2013
are aggregated by months resulting in twelve networks (7" = 12). We have the same
sample of n = 123 banks which accessed the market during this period resulting in a
123 x 123 binary adjacency matrix Y,. Each edge y;;; of Y; represents the amount lent
by bank 7 to bank 7 during month ¢.

We follow the same procedure of Section 2.5.1 to estimate the model. The latent
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Figure 2.4: Boxplots of the distances traveled by banks in the latent space during twelve
months for the unsecured network data.

positions and parameters of the model are initialized as described in Appendix 2.A.2.
The initial values of 7¢ and o2 were set to 0.3552 and 1, respectively. The prior
hyperparameters were set to v, = v, = 2, £ = 73, £ = 0.001 and (pg, X5) = (0,2-I).

We evaluate models having dimensions of p = {2, 3,4} and the model with 4 dimen-
sions achieved the minimum DIC. We run 100,000 iterations of the MCMC algorithm
with a burn-in of 20,000 iterations. The Geweke (1992)’s convergence test for 72, o2
and fy indicated convergence (Z-scores of 0.02, -0.45, -0.46, respectively). The MCMC
trace plots of posterior values of 72, ¢ and 3, after the burn-in and keeping values at
every 20 iterations are given in Figure (2.5). The figure also shows the autocorrelation
functions and marginal posterior distributions of the parameters. The thinning was
able to reduce the autocorrelation of the samples of the Markov chain.

In order to investigate how bank characteristics affect the probability of a pair of
banks forming a connection, we estimate seven different specifications of the model
including the following dyadic covariates: Size, Credit, Securities, NPL and Deposits.
We compare the AUC of the in-sample and out-of-sample predictions and the DIC of
the model’s different specifications. The out-of-sample predictions are based on the
model estimated using networks observed from July 2012 to June 2013 and compared
to the network observed at July, 2013. Table (2.4) shows the coefficients and AUC and
DIC values for the model estimated including different set of variables.

The AUC values for the in-sample predictions of all specifications are high, showing
that the models fit the data quite well. The AUC values are approximately 0.94. The
AUC values of the out-of-sample predictions are also high showing that the model
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Figure 2.5: MCMC trace plots, autocorrelation functions and posterior distributions of 72,
0% and By for the repo network data. Vertical dashed lines show the mean of
the posterior distributions of the parameters.

provides good one step ahead predicted probabilities as well. The inclusion of the
variable Size has the highest impact on AUC values. The model with all variables but
Size has the lowest AUC while the model with only a constant has higher AUC values
than this model. The model without covariates and the model with all variables with
the exception of Size have the worst fit (the highest DIC values). The difference of the
DIC values are not high, nonetheless the specification (3) has the lowest DIC.

Similar conclusions concerning the importance of Size are drawn for the repo net-
work model. The improvement of the model’s fit with the inclusion of other variables
in addition to Size is not significant. Size coefficients are positive which imply that
it is more probable for banks to have ties when the difference in their sizes is large
compared to ties between banks of similar sizes. The coefficients of the other variables
(Credit, Securities and Deposits) are negative, implying that there is a preference for

ties between banks of similar characteristics while the coefficients of NPL are positive.
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2.6 The latent space and model’s goodness-of-fit

We expect that the latent space can account for the unobserved bank attributes that
affect the link formation and improve the model’s fit. Hence, it is important to assess
the fit of the model in which the probability of a tie depends only on observed covariates
x;j+ and the model in which the latent space is included.

Table (2.5) presents the coefficients of the model estimated without the latent space.
It is a logistic regression model in which the dyads are independent to each other and
dependencies among nodes in the network are not represented. Since the unsecured
and the repo networks have similar characteristics, we present the results only for the
model estimated using the unsecured network data.

The relations between banks are reciprocal and transitive. The average reciprocity
and transitivity of the observed networks are 0.51 and 0.36, respectively. However,
the model without the latent space assumes that a link between a pair of banks is
independent to other links. The estimated coefficients of both models have same signs
with the exception of the constant that controls the overall density of the network.
However, they are very different indicating that it is important to take the latent space
into account. For instance, the coefficients of the model with a constant and variable
Size are -2.95 and 0.25 for the model without the latent space while the coefficients for
the model with the latent space are 0.57 and 0.82.

The model’s goodness of fit is evaluated computing the AUC of the in-sample and
out-of-sample link predictions. To obtain the out-of-sample link predictions we estimate
the model and compute the one step ahead predicted probabilities that are compared
to the network observed in July 2013. The results show that the inclusion of bank
variables improved the fit of the model without the latent space. However, the AUC of
the in-sample and out-of-sample link predictions of the model without the latent space
are on average just 0.70 compared to an AUC of 0.92 for the model with the latent
space.

Figure (2.6) shows the ROC curve for the out-sample predictions of the models with
and without the latent space and including only size of the banks as covariate. Although
the predictions of the model with the latent space has a high AUC and performs better
than the model without the latent space, it could not outperform the predictions of the
simple method based on Y7 to predict Yr,;. Due to the persistence of the network
links, this naive prediction method obtained higher true positive (sensitivity) and false
positive (1 — specificity) rates than the latent space model.

Then, we evaluate model adequacy by comparing selected network statistics com-

puted for the observed data with distributions induced by the statistical model (see,
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Figure 2.6: ROC curve showing the TPR (True Positive Rate) and the FPR (False Positive
Rate) of the models with the latent space (solid line) and without the latent
space (dashed line).

e.g., Durante et al., 2017). To perform this graphical test of goodness-of-fit we proceed
as follows: first, we simulate a large number of networks from the estimated model.
For each simulated network we compute a set of graph statistics of interest. Then, the
distributions of graph statistics of the simulated data are compared to the values of
the observed network. If they fall in the tails of the distributions, it is an indication of
the lack of fit.

To compare the simulated and observed networks it is important to choose an
appropriate set of graph statistics. Although it may not be immediately clear what
kinds of network properties are relevant, these statistics should match the purpose of
the estimation (Hunter et al., 2008). We chose the following set of statistics which
we believe represent important aspects of the interbank networks’ structure examined
by empirical works: mean and coefficient of variation of the degree distribution, den-
sity, transitivity, reciprocity, avarege path length, assortativity and mean eigenvector
centrality. For instance, we included the mean degree and its coefficient of variation
because degree is a fundamental characteristic of the network. We included density to
check if the model is able to reproduce the fact that interbank networks are sparse.
We added assortativity as an indication of the core-periphery structure in which banks
with few connections are generally connected to highly connected banks (Craig and
von Peter, 2014). Reciprocal transactions (reciprocity) have a significant effect on the
establishment of lending relationships (see, e.g., Affinito, 2012; Brauning and Fecht,
2017). Transitivity was included because high clustering in financial networks may

make banks more vulnerable to contagion effects (Georg, 2013). The average path
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Figure 2.7: Kernel density estimates of selected graph statistics based on simulated net-
works under the unsecured network model with the latent space (black line)
and without the latent space (gray line). Dashed lines represent the true graph
statistics in December, 2016.

length is related to the closeness and betweenness measures of centrality and has an
effect on the propagation of shocks in the network. Finally, eigenvector centrality has

inspired measures of systemic risk such as DebtRank (see, e.g., Battiston et al., 2012).

Figure (2.7) shows kernel density estimates of selected graph statistics for the sim-
ulated data from the model estimated using the unsecured network data. The figure
shows simulated data of the model estimated with the latent space (black lines) and
without it (gray lines) alongside the observed graph statistics (dashed lines). The fig-
ure displays the distributions of graph statistics only for December 2012, although the
model accurately replicates graph statistics of the observed networks for the twelve

months of data.

According to the density distributions, the inclusion of the latent space improves the
model’s fit compared to the model incorporating only information on banks’ observed
characteristics. It is possible to see that the model with the latent space generates
datasets Y that resemble the observed dataset in terms of different graph statistics of
interest such as degree distribution, transitivity and average path length. The model
without the latent space is able to generate networks with mean degree similar to the
observed data, however the dispersion of the degree distribution is much smaller than
the true data. Although for some graph statistics like reciprocity and assortativity

the simulated data do not match the observed values, the model which incorporates a
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latent space fits the data better than the model without the latent space for all graph

statistics evaluated, especially for transitivity.

2.7 Conclusion

In this chapter, we have used the dynamic latent space approach of Sewell and Chen
(2015) to model directed networks of monthly interbank exposures. The model can
account for the interdependence among nodes present in network data through the
latent space. The positions of the nodes are easily estimated and provide a visual
representation of network relationships and their evolution over time. We applied this
methodology to analyze two different datasets: the unsecured interbank network and
the repo network of Brazilian banks. We compared the fit of the model with the latent
space and the model in which the latent space is not included. We showed that the
model which incorporates a latent space is able to capture some features of the dyadic
data such as transitivity. On the other hand, the model in which the probability of

forming a tie depends only on observed characteristics of banks has a poor fit.

A distinguish feature of the interbank data analyzed is the high level of reciprocal
relationships between banks (y;; = y;;). The latent space model has a better fit than
the model lacking such structure, although the data exhibit more reciprocity than the
estimated by the model. In this case, the model can be extended by estimating the
probability of each dyad (y;;, y;;) as independent of other dyads, given the positions in
the latent space. Another possible extension to this work is to apply the latent space

approach to weighted data and assess the fit of the model.

2.A Appendix

2.A.1 Posterior distributions

We derive the posterior density of Z,; for the Bayesian estimation of state-space models
using Gibbs sampler and MH algorithm. See Geweke and Tanizaki (2001) and Sewell
and Chen (2015) for more details. Considering the state-space model of Section 2.2,
the density of Z1.r and Yi.r given 9 = (72,02), 8 and Xy, is written as

(29) m (ZI:T7 Yl:T|X1:T7 1/)7 ﬁ) =7 (ZI:T"‘/J) ™ (YI:T|Z1:T7 Xl:T7 ﬁ)
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where the two densities in the right hand side are represented by

T
(2.10) T (Zorl) = [ [ 7 (Ze|Z1), %)
t=1
T
(2~11) ™ (YLT\ZLT7X1:T75) = 1_[7T (Yz\ZnXLT,ﬂ)
t=1

The conditional distribution of Zi.r is

™ (Z11T7 Yl:T‘Xl:T7 ,(/}7 ﬂ)
f ™ (ZI:T, Y12T|X1:Ta 1[)7 ﬂ) leit

(212) W(ZLT|Y1:T7X1:T7¢HB) =

The conditional density function of Z; given Zy;_1, Ziy1.7, X117, ¥ and B is derived

from the previous equations and is given by

m (Zl;T|Y1:T7 Xl:T: ¢> /6)
fW(ZLT\YLT,Xl:TyT/’vﬁ) dZ,

(2.13) T(Ze|Z1.t 1, Zoyrr, Yo, X, ¥, B) =

~ T (Ye|Zt, Xir, B) 7 (Zi|Zp—1, ) T (L1 |Zeyop) i t=1,...T—1
7T(Yt|Zt>X1:TaB)7T(Zt|Zt717¢) ift="T
Equation (2.13) gives the conditional distribution of Z,. The conditional distribution

of the row z; is proportional to

(214) ﬂ—(Zit|Yltt7Z11tﬂX11t7’¢)716)
(Hj:j#i pz‘jtpm) N (20, 7°L,) N (i(s41) |2it, 0°T,) fi=1
o (Hj:j;éi pijtpjit) N (Zi(t+1)|zit7 O'QIP) N (Zit|zi(t—1)7 O'QIP) ifl<t<T
(Hj:#ipv?jtpﬂt) N (zitlzit-1), 0°1,) ift=T

where pije = P(yie = 1|2y, X¢, B) and ¢ = (72, 0%). The posterior density of the model

parameters ,@I follows the form

-MVNy(Bpg, Xp).

(2.15) 7 (B|Y 17, Zor, Xoip) {H H[)m

t=1 i#j
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The parameters 72 and o2 can be Gibbs-sampled and their full conditional distributions

are

(2.16)

(2.17)

2.A.

1 n
™ (7°|Z1) ~ IG ((VT +np)/2,v,62/2 + 3 Z |z“||2) .
=1

T

7w (0%|Z1.r) ~1G ((Va +np(T —1))/2, 1,65 /2 + %Z Z Hzit - Zi(tl)”2>

t=2 i=1

2 Initialization

The starting values of the Markov chain are obtained as follows:

1.

3.

Latent positions Z;.7: Hoff et al. (2002) use multidimensional scaling (MDS) to
get the initial estimates of the latent positions. The MDS takes the n x n matrix
of distances between objects and returns their positions in a lower dimensional
space for visualization while preserving the distances as well as possible. Sarkar
and Moore (2005) extend the MDS by using it to get the initial estimates of
Zﬁl). Then, for t = 2,...,T, they perform the MDS along with the objective

o e e s 1 1 . .
of minimizing ‘ZE ) Zijl , where |-|; denotes the Frobenius norm, to avoid

that the node positions change drastically from one time step to another. For
the matrices of distances, Sewell and Chen (2015) suggest the use of the length
of the shortest path from ¢ to j at time ¢ scaled by 1/n. We use two different
methods to obtain a set of dissimilarity measures between pairs of banks: the
shortest path length and the absolute value of the difference of the log of bank

assets.

Parameters 72 and o?: The initial value for 72 was set using the initial estimates

of Z, and is given by:

1 & )
2.18 — § zi|]?.
(2.18) wp 2 [z

It is possible to obtain initial estimate of o using the same procedure, but Sewell
and Chen (2015) recommend to set a large initial value for o to allow large
movements of the latent positions at the beginning of iterations and increase the

speed of convergence.
Parameter 3: Using the initial estimates of the latent positions, starting value
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of B is found by numerical maximization of the observation equation (optim

function of the R environment).

2.A.3 Network statistics

In this appendix we describe the network statistics that are used in the chapter. The
density of a network is the ratio of the number of existing edges to the number of

possible edges. It is given by

Den(G) = 32 oM

i,J

where G, is the graph and y;;; is the tie between nodes ¢ and j at time ¢. Transitivity or

clustering coefficient is the probability that adjacent nodes of a node are also connected

Cl(gt) _ Zz‘,j;ﬁi,k;&j,k#i gz‘jt?jikt?jjkt

D i kbt Vit ikt

where ¥i;0 = maz {ysjt, Y ;- In this case, transitivity is computed ignoring the direction
of the edges. Reciprocity is the proportion of the total number of reciprocated edges
to the total number of edges

Zi i YigtlYjit
Re(Gy) = S22 7070
Zi,]’ Yijt

Transitivity can also be calculated for each node, and then averaging across all
nodes. Reciprocity can also be computed as the number of reciprocated dyads divided
by the number of not connected or single connected dyads.

The (geodesic) distance between nodes @ and j in a network is the length of the
shortest path between them. This distance, which will be denoted by d(i, j;G,), is
used to compute the average path length and the diameter. These two measures are
computed considering only directed paths. The average path length is the average

length of the shortest paths between nodes

_ Z” d(i, j; Ge)

d(G) n(n—1)

while the diameter is the length of the longest geodesic in a graph, given by

D(G,) = Ig?}xd(i,j; Gi)-
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