Random walks in stochastic surroundings
Rolles, S.W.W.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

Acknowledgments
1 Introduction 3
1.1 A short history 3
1.2 My own work 5
2 Scenery reconstruction 8
2.1 The scenery distinguishing problem 9
2.2 The scenery reconstruction problem 9
2.3 Reconstruction in polynomial time 10
2.4 Errors in the observations 11
2.5 Related coin tossing problems 11
3 Random permutations 11
3.1 Up-right paths 11
3.2 Asymptotic behavior of the length of a longest increasing subsequence 12
3.3 Moderate deviations 13
References 13

2 ERRW on finite graphs 19
1 Introduction 19
2 Result 20
3 Reinforced random walk as a mixture of Markov chains 22
4 The number of k-paths 25
5 Asymptotics 29
6 Proof of Theorem 2.1 33
References 35

3 How edge-reinforced random walk arises naturally 37
1 Introduction 37
1.1 Result 37
2 Result for a general graph 40
3 Mixtures of reversible Markov chains 41
4 Some graph-theoretical lemmas 43
5 Proofs of Theorems 1.2 and 2.1 45
References 53

vii
4 Tubular recurrence
 1 Introduction ... 55
 2 Definitions and Results 56
 3 Potential Equations ... 59
 4 Characterization of Recurrence and Transience 60
 5 Application to DRRW ... 64
 References .. 66

5 Reconstructing a random scenery observed with errors 67
 1 Introduction and result 67
 2 Notation and setup ... 69
 2.1 Conventions about constants 71
 3 The structure of the reconstruction 72
 4 Proofs ... 75
 5 The key algorithm of the reconstruction 80
 6 The key algorithm reconstructs correctly 82
 6.1 Definition of the key events 82
 6.2 Combinatorics ... 84
 6.3 The basic events have high probabilities 90
 6.4 Alg^n reconstructs with high probability 100
 References .. 100

6 Reconstructing a random scenery in polynomial time 103
 1 Introduction and Result 103
 2 Review of a result of Löwe/Matzinger/Merkl 104
 3 Proof of Theorem 1.1 105
 3.1 The algorithm A^m_{initial} 105
 3.2 Some properties of k 106
 References .. 109

7 Moderate deviations for longest increasing subsequences: the lower tail 111
 1 Introduction ... 111
 1.1 Results ... 113
 1.2 Incorporating an estimate of Baik, Deift, and Johansson 114
 2 Summation .. 116
 3 De-Poissonization ... 119
 4 Appendix: Asymptotic behavior of the Tracy-Widom distribution 123
 References .. 124

Summary .. 127

Nederlandse samenvatting .. 129

Curriculum Vitae ... 133