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qualitative approaches that collect measurements of different origins and puts them on a well-
defined scaffold, e.g. a metabolic network. Data integration thus consider the identity of the
variables in the different data sets. E.g. gene expression data, proteomics and metabolomics
data can be integrated by placing their intensity values at the corresponding position in the
metabolic network. The identity of the different variables of different sources is taken into
account when collecting the data. When a metabolite is measured on two platforms, both vari-
ables are linked to the same position on the network. Thus for data integration, network infor-
mation and ontologies on the meaning of the variables are necessary.

Data fusion methods are quantitative methods that combine multiple data sets that are
measured on the same set of samples. The models that are developed are based mainly on cor-
relations between the variables. In data fusion methods, the identity of the variables of the data
sets is not directly used in the analysis. Only after the models have been developed, the identity
of the variables can be used when interpreting the data analysis results. In this paper the focus
is fully on data fusion methods.

Several classification methods exist for high dimensional data [1], e.g. principal component
discriminant analysis (PCDA)[2], and partial least squares discriminant analysis (PLS-DA)[3],
both of which are frequently used in the field [4,5]. However, these standard methods cannot
handle complementary data obtained from multiple platforms. A commonly used method to
fuse data from multiple platforms, to reveal their underlying relationships, is simultaneous
component analysis (SCA)[6–8]. While useful for certain questions, it does not specifically
classify or make predictions about class membership. To overcome this bottleneck, we propose
to incorporate SCA into PCDA. This new method, simultaneous component discriminant
analysis (SCDA), will allow for proper discrimination between classes by fusing data from dif-
ferent platforms.

The analysis of fused metabolomics data from different platforms however is not straight-
forward. One of the issues is that most multivariate data analysis methods, and also SCDA, are
limited by the fact that homoscedastic error is assumed. In metabolomics, many error sources
result in a measurement error variance that is proportional to the measured intensity. This is
the reason why relative standard deviations (RSD) are often used to quantify the quality of a
metabolomics platform[9]. In more advanced approaches, the measurement error variance is
proportional to the intensity level at large intensity levels but constant at low intensity levels
[10,11]. Heteroscedastic and even correlated error structures can lead to incorrect estimation
of standard errors of discrimination coefficients and thus making incorrect assumptions about
variable importance in discrimination models.

Several methods have been applied successfully to remove the non-constant measurement
error variance. Transformation of the data is a well- known method to stabilize the variability
of the data. The most common transformation approaches are the square root and the log
transformation[12,13]. Both methods however, do not take a constant measurement error var-
iance into account for low concentration values. The generalized log (glog) transformation
works better in cases where the measurement error stays stable at low intensities, but increases
for higher intensities. Generalized log-transformation (glog) of metabolomic data was used to
make multivariate classification more effective.

Maximum likelihood scaling (MALS) [14] also takes the measurement errors into account.
It uses a maximum likelihood principal component analysis to filter out measurement noise
within the data; it down-weights measurements with higher uncertainty, i.e. higher measure-
ment error variances. Both data-transformation and MALS filtering approaches are methods
that are applied before data analysis.

We also introduce a third approach to deal with the non-constant measurement error vari-
ance. The SCDA method will be extended by down-weighting unreliable data through
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2.4. Measurement error structure model
Both in the filtering as well as in the modelling procedure a weight matrix has to be deter-
mined, which exists of the reciprocal of the measurement error variance for measurement
on each metabolite. To correct for differences in measurement error variance, an optimal
estimated error variance structure is essential. In metabolomics data the measurement
error typically increases with measured intensity level [11]. This typical error structure is
best described by the Rocke-Lorenzato model [10], which assumes a constant error vari-
ance for small intensities and a multiplicative variance for higher intensities. Here, we fol-
low the approximation by van Batenburg et al. [11] of that error model which has a
constant part and a part depending on the concentration. The measurement error vari-
ance s2
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duplicates in the study using all variables � that belong to group �.
Besides the Rocke-Lorenzato model we also used the median error variance per metabolite

to weigh the residuals independent of their measured intensity, to study the effect of the weight
matrix in the maximum likelihood fusion model.

2.5. Data
The data contains a total of 61 individuals that can be subdivided into 3 groups:

a) 30 lean controls

b) 16 healthy obese individuals, on the list for gastric bypass

c) 15 diabetic obese patients, measured before and 1 to 4 months after gastric bypass

Within each group a number of sample replicates were measured, 4 in the control group
(a), 4 in the healthy obese group (b), and 7 in the diabetic obese group with paired data (c), of
which 3 before and 4 after treatment (though not from the same individual). A pooled quality
control (QC) sample is used to monitor possible instrumental drift.

For each individual 43 amino acids were measured (LC-MS) and their intensity levels are
determined by means of an internal standard. Not each metabolite had a unique internal stan-
dard; some internal standards were used to standardize multiple metabolites. Injection repli-
cates were averaged. Only a single measurement batch was needed to obtain the data, in which
also 19 quality control samples were measured.
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For scaling methods and centering, scaling parameters are obtained from the training set
and applied to the test set.

For the MALS filtering a weighted PCA is applied on the training data using weights for
each sample i for variable jk defined as ����

� 1
s���

, i.e. the weight for each element in the data is

defined to be the inverse of the standard deviation for that specific element. The standard devi-
ation can come from the Rocke Lorenzato model of the error variance for each metabolite or
they are defined as the median error variance for each metabolite. The weighted PCA model
parameters are then applied to the test set to filter the heteroscedastic variance from the data.
The MALS filtering is also applied in a cross validation approach such that the filtering of each
sample is based on weighted PCA model estimates obtained from the other samples. The
MALS filtered data are used in a normal PCDA cross validation procedure as discussed in sec-
tion 2.8. After filtering a PCDA model is applied to the data in a cross model validation
approach to prevent overfitting.

Finally, for the modelling approach a weighted PCDA modelling is applied in a cross model
validation approach. The model parameters are obtained from the training set and applied to
the test set for prediction of class membership.

In all approaches the number of components was not optimized in each cross validation
round but always fixed to 3, 5, or 7 components as can be found in Table 1. In this way we can
also learn how much the model is effected by the number of selected components.

2.8. Validation
Cross-validation is used to define the classification errors for each of the approaches used. The
data was split in 8 parts, where each part contained 2 healthy obese and 2 diabetic obese indi-
viduals (except for the last part that only contained a single diabetic obese individual). 7 parts
(training set) are used to train the SCDA model which is then used to predict the class of the
last part (test set). This is repeated until each individual has been left out in the test set once.
The number of incorrectly predicted samples is calculated. A cross model validation procedure
was used to prevent overfitting of the classification models. In cross model validation, a subset

Table 1. Average number of misclassifications.

Method LV = 3 LV = 5 LV = 7
Raw Center 10.7 10.9 10.7
Raw Auto 9.8 9.2 9.1
SQRT Center 11.2 9.4 8.1
SQRT Auto 9.9 9.1 9.9
Log Center 11.8 13.0 10.8
Log Auto 10.0 8.9 9.9
Glog Center 10.2 11.8 9.9
Glog Auto 9.7 8.4 9.4
MALS RL Center 14.7 14.7 12.3
MALS RL Auto 10.8 10.0 9.9
MALS MED Center 12.2 13.0 13.3
MALS MED Auto 11.5 13.6 11.7
Weighted MED 11.9 9.6 11.8
Weighted RL 12.9 10.0 11.2

Average number of misclassifications using (W)SCDA methods with different methods for measurement error
variance stabilization methods.

https://doi.org/10.1371/journal.pone.0195939.t001
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of the data is left out and in no way used to define the model. The remainder of the data is
used to define the model with all model parameters such as the number of components. Only
the final model is used to predict the class membership of the left out samples. This is repeated
until each sample has been left out once. This procedure is known for its unbiased classifica-
tion error. If an optimal number of PCDA components is required then this should also have
been performed in a cross model validation approach where the training set is used to find the
optimal model dimension and the final model parameters.

This cross validation procedure is repeated 25 times with each time different combinations
of test set samples, to make sure the results are consistent and not due to chance effects. The
average number of misclassifications is given as the result of the classification for a specific
pre-processing, filtering or modelling approach.

Within the cross validation procedure, the transformations did not have to be repeated for
each new training set as the transformation does not depend on other samples. For the MALS
filtering, a new MALS filtering is applied for each training-set as the MALS filter depends on
the specific samples in the training set. This model is then used to estimate the scores for the
test set samples. Similarly, the weighted SCA model is also calculated newly for each training
set.

In this cross validation procedure, we compared the performance for models with 3, 5 or 7
components. The importance of each metabolite is averaged based on the 8x25 models.

2.9. Software
Correction of potential instrumental drift using the QC measures [24], was performed in
MatLab [25]. Further analysis was performed in Matlab, for PCA the �%� command is used,
linear discriminant analysis was performed using the &�’����( function; block-scaling was
applied by scaling each matrix by its #����$��� norm. Robust regression was performed using
��������� with Huber weight function with default tuning constant. ")*"+transformations
were estimated using the Matlab toolbox described in Parsons et al. [21] Weighted PCA is per-
formed using the MILES Toolbox for Matlab [23].

Results

3.1. Determination of error structures and the effect of transformations
For further analysis the measurement error structure and the optimal GLOG transformations
of the data have to be determined. This was done on the 15 sample replicates. Fig 1 shows the
error structure of the amines and a selected number of lipids classes (TG, PE, and LPC). In the
first row (raw data) are the estimated error variances on the y-axis as a function of the mean
concentration (x-axis) for the amines and the three indicated lipid classes. In each subplot, dif-
ferent colours indicate different metabolites (amines or lipids). As 15 samples were used for
the estimation of the error variance model, 15 circles of each colour are observed. For each
sample the estimated variance is plotted versus the mean of the two replicates. It can be seen
that the levels of the amines and the lipids is rather different, even within their specific classes.
In general, the error variance increases for amines and lipids with higher levels. For a single
lipid, only the cyan circles in the PE class show a clear increase in error variance for larger
lipid levels. The other rows in Fig 1 show the same data after transformation (SQRT, LOG, and
GLOG) or they show an estimated model of the error variance (Rocke-Lorenzato and Median
error model). The other 6 lipid classes have comparable patterns.

3.1.1.Transformation. Transforming the data using a SQRT or (G)LOG scale is a known
method to reduce the measurement error for higher ratios. Fig 1 shows the effect of SQRT,
log-transformation and g-log-transformation on the amine and lipid classes. For all
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