Calcium dynamics in hippocampal neurones
Borgdorff, J.A.

Citation for published version (APA):
Borgdorff, J. A. (2002). Calcium dynamics in hippocampal neurones

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Bibliography

Franciolini F (1988) Calcium and voltage dependence of single Ca2+-activated K+ channels from cultured hippocampal neurons of rat. Biochim Biophys Acta 943:419-427.

Bibliography

signaling by cooperative and mobile Ca$^{2+}$ buffering in Purkinje neurons. Neuron
24:989-1002.

Magee JC, Avery RB, Christie BR, Johnston D (1996) Dihydropyridine-sensitive,
voltage-gated Ca$^{2+}$ channels contribute to the resting intracellular Ca$^{2+}$

following kainate injection into the CA3 subfield. Neuroscience 66:847-860.

immunoreactivity from dentate granule cells in human temporal lobe epilepsy.
Neuroscience 76:377-385.

hippocampal spines: role of spine calcium pumps and calcium diffusion through the

Majewska, A. Tashiro, A. Yuste, R. (2000b) Regulation of spine calcium dynamics by

Mangan PS, Rempe DA, Lothman EW (1995) Changes in inhibitory neurotransmission in
the CA1 region and dentate gyrus in a chronic model of temporal lobe epilepsy. J
Neurophysiol 74: 829-840.

concentrations and buffering without wavelength ratioing. Biophys J 78:2655-2667.

Marengo FD, Monck JR (2000) Development and dissipation of Ca$^{2+}$ gradients in adrenal

Markwardt F, Isenberg G (1992) Gating of maxi K$^+$ channels studied by Ca$^{2+}$
concentration jumps in excised inside-out multi-channel patches (myocytes from guinea

Marrion NV, Tavalin SJ (1998) Selective activation of Ca$^{2+}$-activated K$^+$ channels by co-

Martinez-Pinna J, Davies PJ, McLachlan EM (2000) Diversity of channels involved in
Ca$^{2+}$ activation of K$^+$ channels during the prolonged AHP in guinea-pig sympathetic

Neuroscience 12:420-424.

Mathern GW, Bertram EH, 3rd, Babb TL, Pretorius JK, Kuhlman PA, Spradlin S,
Mendoza D (1997) In contrast to kindled seizures, the frequency of spontaneous
epilepsy in the limbic status model correlates with greater aberrant fascia dentata
excitatory and inhibitory axon sprouting, and increased staining for N-methyl-D-
aspartate, AMPA and GABA(A) receptors. Neuroscience 77:1003-1019.

Neuroscience 10:164-169.

Opin Biol 4:304-312.

Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH (1997) Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 17:3727-3738.

Shao LR, Halvorsrud R, Borg-Graham L, Storm JF (1999) The role of BK-type Ca\(^{2+}\)-
dependent K\(^+\) channels in spike broadening during repetitive firing in rat hippocampal

Simon SM, Llinas RR (1985) Compartmentalization of the submembrane calcium activity

Sloviter RS (1989) Calcium-binding protein (calbindin-D28k) and parvalbumin
immunocytochemistry: localization in the rat hippocampus with specific reference to the
selective vulnerability of hippocampal neurons to seizure activity. J Comp Neurol
280:183-196.

in bloodstream and brain. Canadian Journal of Physiology and Pharmacology 65:1078-
1085.

response of hippocampal neurons to adverse environments. Brain Research 632:180-
194.

Somjen GG (1997) Cell size and Ca\(^{2+}\) changes in freshly dispersed rat hippocampal
neurons during hypo-osmotic and low [NaCl]\(_o\) exposure. Society for Neuroscience
Abstracts 23:1190.

Somjen GG, Borgdorff AJ, Wadman WJ (1997) Free intracellular calcium in neurons in
Physiology.

Somjen GG (1999) Release of Ca\(^{2+}\) from intracellular stores triggered by cell swelling in
hippocampal neurons. FASEB Journal.

Somjen GG (2001) Low external NaCl concentration and low osmolarity enhance voltage
gated Ca currents but depress K currents in freshly isolated hippocampal neurons. Brain
Research:(in press).

Spigelman I, Zhang L, Carlen PL (1992) Patch-clamp study of postnatal development of
CA1 neurons in rat hippocampal slices: membrane excitability and K\(^+\) currents. J
Neurophysiol 68:55-69.

Spigelman I, Tymianski M, Wallace CM, Carlen PL, Velumian AA (1996) Modulation of
hippocampal synaptic transmission by low concentrations of cell-permeant Ca\(^{2+}\)
chelators: effects of Ca\(^{2+}\) affinity, chelator structure and binding kinetics. Neuroscience
75:559-572.

invasion and calcium influx into hippocampal CA1 dendrites. Science 268:297-300.

Stabel J, Arens J, Lambert JD, Heinemann U (1990) Effects of lowering [Na\(^+\)]\(_o\) and [K\(^+\)]\(_o\)
and of ouabaine on quisqualate-induced ionic changes in area CA1 of rat hippocampal

modulation of excitability in acute and chronic model epilepsies. Epilepsy Res Suppl
8:321-334.

Bibliography

