Decision-Theoretic Robotic Surveillance
Massios, N.A.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
The subject of this thesis is the investigation of autonomous surveillance planning for an office-like environment. Surveillance can be informally defined as “a close watch kept over something or someone with the purpose of detecting the occurrence of some relevant events”. Humans perform surveillance tasks quite well, integrating sensing, action, and decision-making flawlessly. Automation of each of these aspects to enable robotic surveillance is non-trivial. In this thesis, we focus on the decision-making involved in “where to go next”.

We approach this problem of surveillance planning by viewing it as a probabilistic decision process, ignoring for now the separate problem of knowing the probabilities and cost in actual situations. We are eventually interested in an algorithmic implementation of such a decision process, so we need to consider aspects of formalisation as well as of efficient computability.

To simplify the discussion we focus on one type of relevant events. The events considered are probabilistic, independent of each other, localised within office rooms and produce some costly damage when present. We took an idealised version of fire as an example of such an event.

Surveillance planning is a relatively new field and few quantitative results are known. For this exploratory research effort, various representations and solution methods of a decision-theoretic nature are considered. The problem can be mapped into formalisms like (PO)MDP or classical decision theory in many seemingly different ways, which are in fact thought to be equivalent. The formalisation conveys the exponential nature of surveillance planning viewed as an optimal search problem. Consequently, this thesis emphasises the computational issues raised by the desire to compute decisions in reasonable time.

The first option for dealing with the computational issues is to limit the look-ahead of the search. This is what is typically done in optimal search problems to control the size of the search space. However, if a small look-ahead is used, the results generated are not acceptable because they fall prey to local minima problems: if a certain area is not important enough to be visited, it may also
prevent other areas beyond it from being explored.

Our solution is to move up from the details and to abstract the problem. An abstracted representation of a target environment for surveillance can be constructed by grouping similar locations into clusters. The decisions then are taken among the various ways in which the clusters can be visited. Search methods based on abstraction boost the effective look-ahead but are necessarily approximate. This creates a hard balancing act between finding a method that is coarse enough to be computable and fine enough to closely approximate the optimal solution. Deciding on this dilemma is not easy, but we show that the structure of the problem can be useful. In our surveillance planning problem for an office building, the topology and the pattern of costs of the environment largely guide the actions of the robot and this should be reflected in appropriate clusterings. It turns out that for office buildings, a sensible general method can be presented for grouping locations of similar topological structure into clusters shaped as stars and corridors.

A new decision strategy for such an abstracted building called the fixed cluster route strategy is proposed. The fixed cluster route strategy computes the expected cost for a predefined route within a cluster instead of giving a heuristic estimate of the cost for all possible routes within the cluster. Three route types are considered: explore, transit and ignore. The robot then commits itself to the predefined route it selects by comparing the expected costs at a fixed decision-level.

The fixed cluster route strategy is still heuristic, but simulation results show that it beats other simpler strategies, also presented in this thesis, in cases where local minima are present. It is believed that this strategy can be further improved, since it loses from a simple one-step look-ahead minimisation of time between visits when no cost structure is present. The main contribution of this thesis is probably to the theoretical understanding of the surveillance planning problem. The fixed cluster route strategy suggests that abstraction may be the route to achieving automated surveillance planning.
Titles in the ILLC Dissertation Series:

ILLC DS-1996-01: Lex Hendriks
Computations in Propositional Logic

ILLC DS-1996-02: Angelo Montanari
Metric and Layered Temporal Logic for Time Granularity

ILLC DS-1996-03: Martin H. van den Berg
Some Aspects of the Internal Structure of Discourse: the Dynamics of Nominal Anaphora

ILLC DS-1996-04: Jeroen Bruggeman
Formalizing Organizational Ecology

ILLC DS-1997-01: Ronald Cramer
Modular Design of Secure yet Practical Cryptographic Protocols

ILLC DS-1997-02: Nataša Rakić
Common Sense Time and Special Relativity

ILLC DS-1997-03: Arthur Nieuwendijk
On Logic. Inquiries into the Justification of Deduction

ILLC DS-1997-04: Atocha Aliseda-LLera
Seeking Explanations: Abduction in Logic. Philosophy of Science and Artificial Intelligence

ILLC DS-1997-05: Harry Stein
The Fiber and the Fabric: An Inquiry into Wittgenstein’s Views on Rule-Following and Linguistic Normativity

ILLC DS-1997-06: Leonie Bosveld - de Smet
On Mass and Plural Quantification. The Case of French ‘des’/‘du’-NP’s

ILLC DS-1998-01: Sebastiaan A. Terwijn
Computability and Measure

ILLC DS-1998-02: Sjoerd D. Zwart
Approach to the Truth: Verisimilitude and Truthlikeness

ILLC DS-1998-03: Peter Grunwald
The Minimum Description Length Principle and Reasoning under Uncertainty

ILLC DS-1998-04: Giovanna d’Agostino
Modal Logic and Non-Well-Founded Set Theory: Translation, Bisimulation, Interpolation
ILLC DS-1998-05: Mehdi Dastani
Languages of Perception

ILLC DS-1999-01: Jelle Gerbrandy
Bisimulations on Planet Kripke

ILLC DS-1999-02: Khalil Sima'an
Learning efficient disambiguation

ILLC DS-1999-03: Jaap Maat
Philosophical Languages in the Seventeenth Century: Dalgarno, Wilkins, Leibniz

ILLC DS-1999-04: Barbara Terhal
Quantum Algorithms and Quantum Entanglement

ILLC DS-2000-01: Renata Wassermann
Resource Bounded Belief Revision

ILLC DS-2000-02: Jaap Kamps
A Logical Approach to Computational Theory Building (with applications to sociology)

ILLC DS-2000-03: Marco Vervoort
Games, Walks and Grammars: Problems I've Worked On

ILLC DS-2000-04: Paul van Ulsen
E.W. Beth als logicus

ILLC DS-2000-05: Carlos Areces
Logic Engineering. The Case of Description and Hybrid Logics

ILLC DS-2000-06: Hans van Ditmarsch
Knowledge Games

ILLC DS-2000-07: Egbert L.J. Fortuin
Polysemy or monosemy: Interpretation of the imperative and the dative-infinitive construction in Russian

ILLC DS-2001-01: Maria Aloni
Quantification under Conceptual Covers

ILLC DS-2001-02: Alexander van den Bosch
Rationality in Discovery - a study of Logic, Cognition, Computation and Neuropharmacology
ILLC DS-2001-03: Erik de Haas
Logics For OO Information Systems: a Semantic Study of Object Orientation from a Categorial Substructural Perspective

ILLC DS-2001-04: Rosalie Iemhoff
Provability Logic and Admissible Rules

ILLC DS-2001-05: Eva Hoogland
Definability and Interpolation: Model-theoretic investigations

ILLC DS-2001-06: Ronald de Wolf
Quantum Computing and Communication Complexity

ILLC DS-2001-07: Katsumi Sasaki
Logics and Provability

ILLC DS-2001-08: Allard Tamminga
Belief Dynamics. (Epistemo)logical Investigations

ILLC DS-2001-09: Gwen Kerdiles
Saying It with Pictures: a Logical Landscape of Conceptual Graphs

ILLC DS-2001-10: Marc Pauly
Logic for Social Software