GRB 180325A

VLT/X-shooter spectroscopic observations


Publication date
2018

Document Version
Final published version

Published in
GRB Coordinates Network, Circular Service

License
Unspecified

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
We observed the optical afterglow of GRB 180325A (Troja et al. GCN 22532) with the ESO VLT/X-shooter spectrograph, covering the wavelength range 3000-25000 Å. Spectroscopy started at 03:20:45 UT on 2018-03-25 (i.e., ~1.5 hr after the GRB) and consisted of 8 exposures of 600 s.

The spectrum exhibits a red continuum with several absorption features, including Ly-alpha and different metal and fine-structure lines, together with [OII], [OIII] and Halpha emission lines, all at a common redshift of z=2.248. At the same redshift, we also note the presence of a clear continuum depression corresponding to the 2175 Å bump. Finally, the spectrum shows the presence of a strong double intervening system at z = 2.041/2.043.

The above results are in agreement with the findings of Heintz et al. (GCN 22535).

We acknowledge the excellent support from the ESO staff, particularly Luca Sbordone, Jose Velasquez and Zahed Wahhaj in obtaining these observations.