Experimental Study of Nanoscale Exchange Coupling
Xiao, Q.

Citation for published version (APA):
Xiao, Q. (2003). Experimental Study of Nanoscale Exchange Coupling

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

Chapter 1 Introduction .. 1
1.1 Historical summary .. 1
1.2 Fourth-generation permanent magnets 2
1.3 Composite permanent-magnet materials 4
1.4 Review of experimental studies of nanocomposite permanent magnet 5
1.5 Motivation of the present work 8
References ... 9

Chapter 2 Theory of nanometer exchange coupling 11
2.1 One-dimensional model 11
2.2 Effect of exchange coupling on the macro-magnetic properties 14
2.3 Three-dimensional theory 16
References ... 19

Chapter 3 Experimental methods 21
3.1 Sample preparation ... 21
3.2 Structure, microstructure and phase analysis 23
3.3 Magnetic measurements 25
References ... 26

Chapter 4 Effect of exchange coupling in nanocomposite two-phase Nd-Fe-B magnets 27
4.1 Introduction ... 27
4.2 Experimental .. 29
4.3 Results and discussion 29
 4.3.1 Effect of the grain size on the exchange coupling 29
 4.3.2 Effect of the magnetocrystalline anisotropy of the hard-magnetic phase on the exchange coupling 36
4.4 Conclusions .. 43
References ... 44
Chapter 5 Effect of nanoscale exchange coupling in CoPt bulk magnets ... 47
5.1 Introduction ... 47
5.2 Experimental ... 49
5.3 Effect of annealing on the disorder-order transformation .. 50
5.4 Effect of the ordering transformation on the magnetic properties ... 58
 5.4.1 Curie temperature ... 58
 5.4.2 Magnetocrystalline anisotropy 60
 5.4.3 Magnetic hardening process 60
 5.4.4 Effect of nanoscale exchange coupling 62
5.5 Conclusions .. 67
References .. 68

Chapter 6 Ordering transformation and magnetic properties of Fe\textsubscript{59.75}Pt\textsubscript{39.5}Nb\textsubscript{0.75} bulk alloy 69
6.1 Introduction ... 69
6.2 Experimental ... 71
6.3 Results and discussion ... 71
 6.3.1 Effect of homogenization temperatures and cooling rates 71
 6.3.2 Effect of annealing on the phase transformation and magnetic properties 86
6.4 Conclusions .. 101
References .. 103

Summary ... 105

Samenvatting ... 109

Publications in connection with this thesis work 111

Acknowledgements .. 113