Activity of IGR J17445-2747 and SAX J1747.0-2853 in the Swift Bulge Survey

Heinke, C.O.; Bahramian, A.; Maccarone, T.; In't Zand, J.J.M.; Kennea, J.; Kuulkers, E.; Degenaar, N.; Shaw, A.W.; Sivakoff, G.R.; Strader, J.; Wijnands, R.

Published in:
The astronomer's telegram

Link to publication

Creative Commons License (see https://creativecommons.org/use-remix/cc-licenses):
Unspecified

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Activity of IGR J17445-2747 and SAX J1747.0-2853 in the Swift Bulge Survey

ATel #10265: Heinke, C. O., Bahramian, A., Maccarone, T., in't Zand, J., Kennea, J., Kuulkers, E., Degenaar, N., Shaw, A. W., Sivakoff, G. R., Strader, J., and Wijnands, R.

We have recently initiated the Swift Bulge Survey, a wide and shallow Swift/XRT imaging survey of 16 square degrees of the Galactic Bulge around the Galactic Center, to be performed every other week for 15 epochs when the Galactic Bulge is visible. Each Swift exposure is 60 seconds long, reaching a 0.5-10 keV limiting depth of 1×10^{35} erg/s at the Galactic Center, enabling detection of fainter transients than in previous surveys. Our first Swift observations are taking place on April 13, 2017. Here we report detections of two known transients.

IGR J17445-2747 is a transient previously seen in outburst for about 30 days with INTEGRAL, reaching a peak 20-100 keV flux of 30 mCrab or 4.6×10^{-10} ergs/cm2/s (Bird et al. 2010, ApJS, 186, 1; Malizia et al. 2010, MNRAS, 408, 975). It has not been clearly associated with a counterpart at lower luminosities (e.g. Landi et al. 2007, Atel#1273; Tomskie et al. 2008, ApJ, 685, 1143; Malizia et al. 2010, MNRAS, 408, 975), with the most likely association being with the XMM-Newton Slew Survey source XMMSL1 J174429.4-274609, at a 0.2-12 keV flux of 1.6×10^{-12} ergs/cm2/s (Malizia et al. 2010). We report a detection with Swift/XRT of a 10-count source at J2000 coordinates 266.12868, -27.76732 (=17:44:30.88, -27:46:02.4), with error radius 7.5" (90% confidence, though this may be underestimated as the slew may not have fully settled for the observation). We do not detect it in our simultaneous UVOT observation (uvm2 filter), implying the source is located at a distance of at least several kpc. Our Swift detection is 21" from the XMM Slew detection, farther than the combined 9" formal errors from the two surveys, but it seems plausible that the XMM-Newton and Swift sources are associated. The Swift inferred intrinsic 0.5-10 keV flux for the Galactic N_H=1e22, assuming a power-law with photon index 1.7) is 1.7×10^{-12} ergs/cm2/s, or an X-ray luminosity of 1.3×10^{35} erg/s if located at 8 kpc. A thermonuclear burst was observed from IGR J17445-2747 on April 10th by INTEGRAL/JEM-X (Mereminskiy et al. 2017, Atel#10256), indicating that this transient is a neutron star, and that its outburst has lasted at least 3 days. A longer Swift observation of this object is scheduled for April 14th.

SAX J1747.0-2853 (aka 1A 1743-288) is a known transient (Werner et al. 2004, A&A 416, 311), which has been repeatedly detected in recent years by INTEGRAL JEM-X and MAXI, including recent activity continuing since 2016 at the level of 8 and 6 mCrab in 3-10 and 10-25 keV.
respectively (Chenevez et al. 2016, Atel#9387; Clavel et al. 2017, Atel#9115). We detect it at a countrate of 2.7 counts/s, suggesting significant pile-up and (for $N_H=8.8 \times 10^{22}$, Werner et al. 2004) an unabsorbed 0.5-10 keV flux greater than 8.5×10^{-10} ergs/cm2/s (for 8 kpc, $L_X > 6.5 \times 10^{36}$ erg/s). We also detect the known persistent source 1E 1743.1-2843 (e.g. Lotti et al. 2016, ApJ, 822, 57), at a countrate of 0.4 cts/s, which for $N_H=1.3 \times 10^{23}$ (Lotti et al. 2016) gives an estimated unabsorbed 0.5-10 keV flux of 1.7×10^{-10} ergs/cm2/s (for 8 kpc, $L_x=1.3 \times 10^{36}$ erg/s).

We thank the Swift team for their support of these observations, which are ongoing.