Percutaneous evacuation (PEVAC) of multivesicular echinococcal cysts with or without cystobiliary fistulas which contain non-drainable material: first results of a modified PAIR method

Schipper, H.G.; Laméris, J.S.; van Delden, O.M.; Rauws, E.A.J.; Kager, P.A.

Published in: Gut

DOI: 10.1136/gut.50.5.718

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

Download date: 16 Sep 2020
Percutaneous evacuation (PEVAC) of multivesicular echinococcal cysts with or without cystobiliary fistulas which contain non-drainable material: first results of a modified PAIR method

H G Schipper, J S Laméris, O M van Delden, E A Rauws and P A Kager

Gut 2002;50;718-723
doi:10.1136/gut.50.5.718

Updated information and services can be found at:
http://gut.bmj.com/cgi/content/full/50/5/718

These include:

References
This article cites 17 articles, 7 of which can be accessed free at:
http://gut.bmj.com/cgi/content/full/50/5/718#BIBL

2 online articles that cite this article can be accessed at:
http://gut.bmj.com/cgi/content/full/50/5/718#BIBL

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Topic collections
Articles on similar topics can be found in the following collections

Pancreas and biliary tract (413 articles)
Interventional radiology (273 articles)
Infection (392 articles)

Notes

To order reprints of this article go to:
http://www.bmjjournals.com/cgi/reprintform

To subscribe to Gut go to:
http://www.bmjjournals.com/subscriptions/
Percutaneous evacuation (PEVAC) of multivesicular echinococcal cysts with or without cystobiliary fistulas which contain non-drainable material: first results of a modified PAIR method

H G Schipper, J S Laméris, O M van Delden, E A Rauws, P A Kager

Background: Surgery is the treatment of choice in echinococcal cysts with cystobiliary fistulas. PAIR (puncture, aspiration, injection, and reaspiration of scolecidals) is contraindicated in these cases.

Aim: To evaluate a modified PAIR method for percutaneous treatment of multivesicular echinococcal cysts with or without cystobiliary fistulas which contain non-drainable material.

Patients: Twelve patients were treated: 10 patients with multivesicular cysts which contained non-drainable material and were complicated by spontaneous intrabiliary rupture, secondary cystobiliary fistulas, cyst infection, or obstructed portal or hepatic veins; and two patients with large univesicular cysts and a ruptured laminated membrane, one obstructing the portal and hepatic veins and one a suspected cystobiliary fistula.

Methods: The methods used, termed PEVAC (percutaneous evacuation of cyst content), involved the following steps: ultrasound guided cyst puncture and aspiration of cyst fluid to release intracystic pressure and thereby to avoid leakage; insertion of a large bore catheter; aspiration and evacuation of daughter cysts and endocyst by injection and reaspiration of isotonic saline; cystography; injection of scolecidals only if no cystobiliary fistula was present; external drainage of cystobiliary fistulas combined with endoprosthesis or sphincterotomy; catheter removal after complete cyst collapse and closure of the cystobiliary fistula.

Results: In all 12 patients initial cyst size was 13.1 (6–20) cm (mean [range]). At follow up 17.9 (4–30) months after PEVAC, seven cysts had disappeared and five cysts had decreased to 2.4 (1–4) cm (p=0.002). In eight patients with multivesicular cysts, a cystobiliary fistula, and infection, cyst size was 12.5 (6–20) cm, catheter time 72.3 (28–128) days, and hospital stay 38.1 (20–55) days. At 17.3 (4–28) months of follow up, six cysts had disappeared and in two cysts residual size was 1 and 2.9 cm, respectively (p=0.012). In four patients without a cystobiliary fistula, cyst size was 14.4 (12.7–16) cm, catheter time 8.8 (3–13) days, and hospital stay 11.5 (8–14) days. At 19.3 (9–30) months of follow up, one cyst had disappeared and three cysts were 85 (69–94)% smaller (2.2 (1–4) cm) (p=0.068).

Conclusion: PEVAC is a safe and effective method for percutaneous treatment of multivesicular echinococcal cysts with or without cystobiliary fistulas which contain non-drainable material.
4) or a calcified wall (Gharbi type 5).

Characterised by a heterogeneous complex mass (Gharbi type

tion for the time of albendazole treatment; and cysts

or albendazole; pregnancy or women who refused contracep-

tion abnormalities; known allergy to local anaesthetics

age <18 years or >75 years; no informed consent; serious

hepatic or portal veins or bile ducts. Exclusion criteria were:

there was a cystobiliary communication or compression of the

vesicular cysts (Gharbi types 1 and 2) were included only if

non-drainable debris were included (fig 1). Patients with uni-

vesicular cysts (Gharbi types 1 and 2) were included only if

there was a cystobiliary communication or compression of the

hepatic or portal veins or bile ducts. Exclusion criteria were:

age <18 years or >75 years; no informed consent; serious

coaulation abnormalities; known allergy to local anaesthetics

or albendazole; pregnancy or women who refused contracep-
tion for the time of albendazole treatment; and cysts

characterised by a heterogeneous complex mass (Gharbi type

4) or a calcified wall (Gharbi type 5).

The drainage procedure is performed in an interventional

radiology suite, appropriately equipped and staffed for

emergency situations. The patient has an intravenous canula

and is continuously monitored with pulse oximetry. After the

procedure, the patient is admitted to the medical ward and

checked at hourly intervals until the morning after the proce-
dure.

The optimal route for puncture of the echinococcal cyst is
determined by CT and US. After intravenous sedation with 2.5
mg midazolam and 0.1 mg fentanyl, and local anaesthesia
with 10–15 ml lidocaine 2%, the cyst is punctured under US
guidance. Then, to prevent leakage, as much cyst fluid as pos-
sible is aspirated to decrease intracystic pressure. A sample of
the aspirated cyst fluid is used for parasitological investiga-
tion and bacterial culture. Viability is assessed by observing proto-
scociles motility by direct microscopy and by neutral eosin
staining. Subsequently, using the Seldinger technique, a 10–12
French gauge (F) catheter with multiple sideholes is inserted
into the cyst cavity after dilating only the skin and proximal
intrahepatic part of the puncture tract, again to prevent leak-
age. The catheter position is confirmed by fluoroscopy. By
repetitive manual injection and reaspiration of small amounts
(5–10 ml) of isotonic saline, the remaining liquefied part of
the mother cyst is removed. The catheter is left in place for
drainage. In a second session the catheter is replaced with a
14–18 F stiff Amplatz sheath (William Cook, Bjaeverskov,
Denmark). A suction catheter is introduced into the cyst cav-
ity through the sheath and the cyst content is evacuated by
directing the catheter towards the daughter cysts, endocyst,
and non-drainable material, and applying suction (fig 2). After
removal of the sheath a catheter of the same French size as the
sheath is placed and contrast is injected into the cyst cavity to
detect a possible communication with the biliary tree. In the

case of a cystobiliary fistula, an endoprosthesis is introduced
endoscopically into the common bile duct (CBD). Sphincter-
otomy is performed when membrane fragments have to be
removed from the CBD or when stenting does not adequately
decrease intraductal pressure. Finally, the catheter is removed
after complete cyst collapse and closure of a possible cystobil-
ary fistula, indicated by a daily catheter output of <10 ml.

After the procedure is completed, cyst size is monitored by
US at two weeks and 1, 3, 6, 12, 18, and 24 months after
PEVAC. If clinically indicated, US is repeated at shorter inter-
vals. CT scans are performed 12 and 24 months after drainage.
The primary end points were defined as complete cyst collapse
at US at the end of the procedure, disappearance of cyst cavity
or at least 50% reduction in cyst size at follow up imaging, and
disappearance of complications such as pain, cystobiliary
fistulas, vascular or biliary compression, and infection. Direct
treatment results were evaluated at the end of the procedure:
early results at six months and late results two years after
PEVAC. The secondary end points of the study were recurrence
of cyst cavity to >50% of its initial size, vascular or biliary
compression, fistulas, pain and infection within two years after
PEVAC, and death, withdrawal from the study, or loss to
follow up. Three examples of cyst appearance before and after
PEVAC are shown in figs 3–5.

PEVAC treatment was approved by the Institutional Review
Board of the Academic Medical Centre, Amsterdam. Informed
consent was obtained from all patients.

Statistics
The Mann-Whitney rank sum test was used to compare
results between patient groups and the Wilcoxon signed ranks
test for paired observations within patient groups (SPSS for
Windows).

PATIENTS AND RESULTS
Patients
Twelve patients with hepatic echinococcosis, mean age 38
years (range 22–61), immigrants from Morocco (five), Turkey
(three), Pakistan (one), Syria (one), Afghanistan (one), and
Greece (one) were treated for recurrent and severe upper
abdominal pain. Ten patients had multivesicular so-called
“mother and daughter” cysts (Gharbi type 3) containing non-
drainable material. Two patients had univesicular cysts

Figure 1 Echinococcal cyst with daughter cysts in the periphery
and centrally located non-drainable material.

Figure 2 Fragments of daughter cysts and endocyst evacuated
through the sheath with a 12 French gauge catheter.
Gharbi type 1) with a ruptured laminated membrane. In one, the right hepatic and portal veins were compressed by the cyst. In the other patient, the univesicular cyst, which did contain one daughter cysts, was suspected of having a cysto-biliary communication.

Complications

Cystobiliary fistulas and infections were the main complications, which occurred only in patients with multivesicular cysts. Less frequently observed complications were significant obstruction of portal and/or hepatic veins in three patients and perforation of a gastric ulcer into the cyst in one patient. Allergic reactions (transient fever, skin rash, eosinophilia) due to leakage of cyst fluid were observed in three patients following changing or removal of the catheter.

Three patients presented with spontaneous intrabiliary rupture. In five other patients the cystobiliary fistula became radiologically apparent on days 8, 17, 20, 25, and 53, respectively, after starting PEVAC. All but one cystobiliary fistula were endoscopically treated by introducing an endoprosthesis into the CBD or by sphincterotomy. In one patient a small cystobiliary fistula closed spontaneously (table 1).

A primary cyst infection was diagnosed in two patients and a secondary cyst infection in seven patients. All patients were successfully treated with antibiotics. In one patient with a primary infection, S milleri and anaerobes were cultured from the cyst cavity. In the other patient, culture was negative due to antibiotic treatment. S morbillorum, S epidermidis, and C freundii were cultured from the cyst cavity in two patients who were readmitted with cyst infection one and five months, respectively, after a PAIR procedure. Remarkably, in both patients bacterial culture of cyst fluid at the end of PAIR was negative.

Contrast injection at endoscopic retrograde cholangiopancreatography (ERCP) caused cholangitis and secondary cyst infection in five patients; three also developed a mild transient pancreatitis. S milleri, C freundii, C albicans, S sanguis, K pneumoniae, H influenzae, anaerobes, and enterococci were cultured from their blood, cyst cavity, or bile.

Cyst viability

In the initially sampled cyst fluid of nine patients, viable protoscolices were diagnosed in addition to fragments of the laminated membrane or hooklets. Remarkably, in both patients with multivesicular cysts which became infected following a PAIR procedure, protoscolices were still viable. In two patients with spontaneously infected cysts, viability of daughter cysts could not be assessed because cyst content was too purulent. In one patient with a multivesicular cyst, no protoscolices or hooklets were diagnosed.

Catheter time

In patients with a cystobiliary fistula, catheters were removed 72.3 (28–128) days after PEVAC, 53.6 (7–120) days after endoscopic treatment of the cystobiliary fistulas (mean (range) (table 1). Hospital stay was 38.1 (20–55) days. In patients without a cystobiliary fistula, catheters were removed after 8.8 (3–13) days and hospital stay was 11.5 (8–14) days. Catheter time and hospital stay were significantly longer in patients with a cystobiliary fistula (p=0.007).

Cyst size

Before treatment, cyst size was 12.5 (6–30) cm in patients with and 14.4 (12.7–16) cm in patients without a cystobiliary fistula (p=0.570). At the end of the procedure, when the catheters were removed, all complaints and complications had disappeared. Cavities had collapsed in all but one patient in whom the daughter cysts were partially evacuated. At follow up, 17.3
4–28) months after treatment, cyst cavities had disappeared in six of eight patients with a cystobiliary fistula and were reduced to 1 and 2.9 cm, respectively, in the other two (p=0.012). In four patients without a fistula, cyst cavity had disappeared in one and cyst size reduced to 2.2 (1–4) cm in the other three, 19.3 (9–30) months after treatment. This 89 (69–100)% reduction in cyst size was not significant for this small number of patients (p=0.068). When all 12 patients were considered as a group, cyst size was significantly smaller 17.9 (4–30) months after treatment than before: 1.6 (0–7) cm versus 13.1 (6–20) cm (p=0.002). In none of the patients had complaints or complications recurred. No patient died, withdrew from the study, or was lost to follow up.

Serology
In comparison with cyst size, the response of total IgG echinococcal antibody titres was slow and started to occur...
and mean hospital stay 19.8–34.6 days. The main complications we noted were cyst infections and cystobiliary fistulas. These complications occurred only in patients with multivesicular cysts and not in those with large univesicular cysts.

Most infections were secondary to a prior intervention. Two patients were readmitted with a cyst infection at one and five months, respectively, after a PAIR procedure. Despite the infection both cysts were still viable. Contrast injection at ERCP also appeared to be a risk for cyst infection. All five patients who underwent ERCP developed cholangitis and cyst infection. In two spontaneously infected cysts, viability and possible infection of daughter cysts could not be diagnosed accurately. PEVAC was performed to support antibiotic treatment.

Three patients presented with a spontaneous intrabiliary rupture and an overt cystobiliary fistula. Of note, in five other patients the cystobiliary fistula became apparent only 1–7 weeks after evacuation of cyst content. Cyst fluid was initially clear but became bile stained in the course of the procedure, in two patients even after about 100 ml were drained. Cystography at the beginning of the procedure could not reliably reveal a cystobiliary communication. The daughter cysts prevented the contrast from reaching the outer limits of the mother cyst. Therefore, care has to be taken with early injection of scolicidal agents into the cavity of multivesicular cysts.

The cystobiliary fistulas were probably firstly masked by the expanded endocyst and subsequently became unmasked by evacuation of cyst content and cyst collapse. However, we cannot exclude the fact that the negative pressure we used to evacuate the laminated membrane contributed to the development of cystobiliary fistulas. In all five patients with secondary fistulas, revealed by contrast injection, initially clear cyst fluid became bile stained in the course of the procedure. In Saremi's method, where the laminated membrane is also evacuated with the contrast from reaching the outer limits of the mother cyst.

Table 1 Decrease in cyst size at follow up after percutaneous evacuation (PEVAC), catheter time (days), and hospital stay, related to the occurrence of cystobiliary (CB) fistulas plus cyst infection in patients with multivesicular echinococcal cysts in the liver. In patient No 8, cyst content was partially evacuated. Patient Nos 9 and 10 had univesicular cysts

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Cyst size before PEVAC (cm)</th>
<th>Cyst size after PEVAC (cm)</th>
<th>Catheter time (days)</th>
<th>Hospital stay (days)</th>
<th>Follow up (month)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1* CB</td>
<td>11</td>
<td>0</td>
<td>43</td>
<td>38</td>
<td>14</td>
</tr>
<tr>
<td>2‡ CB</td>
<td>6.6</td>
<td>0</td>
<td>126</td>
<td>55</td>
<td>24</td>
</tr>
<tr>
<td>3* CB</td>
<td>9</td>
<td>0</td>
<td>28</td>
<td>29</td>
<td>28</td>
</tr>
<tr>
<td>4* CB</td>
<td>6</td>
<td>0</td>
<td>35</td>
<td>41</td>
<td>18</td>
</tr>
<tr>
<td>5* CB</td>
<td>14</td>
<td>0</td>
<td>32</td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>6* CB</td>
<td>20</td>
<td>0</td>
<td>113</td>
<td>37</td>
<td>21</td>
</tr>
<tr>
<td>7† CB</td>
<td>12.7</td>
<td>0</td>
<td>13</td>
<td>14</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>1.5</td>
<td>12</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>1.5</td>
<td>12</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>11† CB</td>
<td>15</td>
<td>2.9</td>
<td>73</td>
<td>50</td>
<td>4</td>
</tr>
<tr>
<td>12† CB</td>
<td>18</td>
<td>1</td>
<td>128</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>All patients</td>
<td>13.1 (6–20)</td>
<td>2.4 (1–4)</td>
<td>51 (3–128)</td>
<td>29.3 (8–55)</td>
<td>17.9 (4–30)</td>
</tr>
<tr>
<td>CB fistula</td>
<td>12.5 (6–20)</td>
<td>1.9 (1–2.5)</td>
<td>72.3 (28–128)</td>
<td>38.1 (20–55)</td>
<td>17.3 (4–28)</td>
</tr>
<tr>
<td>No fistula</td>
<td>14.4 (12.7–16)</td>
<td>2.2 (1–4)</td>
<td>8.8 (3–13)</td>
<td>11.5 (8–14)</td>
<td>19.3 (9–30)</td>
</tr>
</tbody>
</table>

*Spontaneously or †secondarily infected cysts, or ‡cyst cavity infection after PAIR.
the cyst cavity would be closely related. Therefore, catheter time and hospital stay were long. In the case of a cystobiliary fistula, catheter time was 72.3 (28–128) days and hospital stay was 38.1 (20–55) days; without a fistula, these times were 8.8 (3–13) days and 11.5 (8–14) days, respectively (p=0.007 and 0.007, respectively). This is comparable with a mean hospital stay reported in surgically treated patients with cystobiliary fistulas of 19.8–34.6 days.\(^{11\text{--}13}\) Hospital stay in our patients with cystobiliary fistulas might have been shorter if we had accepted some residual cyst size by removing the catheter earlier. Another option is to discharge the patient and monitor closely in the outpatient department, removing the catheter when daily output is <10 ml.

The final result at follow up, 17.9 (4–30) months after PEVAC, was encouraging. Cyst cavities had disappeared or become significantly smaller (p=0.002). The decrease in echinococcal antibody titre was slow, less remarkable, and a significant increase was observed both with and without a marked allergic reaction.

In summary, PEVAC is a safe and effective method for percutaneous treatment of multivesicular echinococcal cysts with or without cystobiliary fistulas which contain non-drainable content, especially in cases of vascular or biliary obstruction. In univesselary cysts, PEVAC is only indicated in selected cases with a cystobiliary communication, or vascular or biliary obstruction. Following PEVAC, cysts disappeared completely or became >60% smaller. Compression of bile ducts and portal or hepatic veins resolved. Cyst infections and cystobiliary fistulas were the main complications. In patients with a cystobiliary fistula, pretreatment and post-treatment morbidity was high and hospital stay was long but comparable with that of surgery. PEVAC may be improved to reduce morbidity and hospital stay. PEVAC will not replace surgery but may simply create access to a less invasive treatment for more patients. Whether PEVAC reduces the relapse rate will need to be demonstrated in future studies. The observation period of our study was too short to draw any conclusions regarding the recurrence rate following PEVAC.

ACKNOWLEDGEMENT

We thank Professor C Filice (University of Pavia, Italy) for his support; Dr T van Gool (Laboratory of Parasitology, AMC) for parastological examination of the cyst fluid; and Dr AM Polderman (Laboratory of Parasitology, Leiden University Medical Centre) for the serological tests.

Authors’ affiliations

H G Schipper, P A Koger, Department of Infectious Diseases, Tropical Medicine, and AIDS, Academic Medical Centre, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands

J S Laméris, O M van Delden, Department of Radiology, Academic Medical Centre, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands

E A Rauws, Department of Gastroenterology, Academic Medical Centre, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands

REFERENCES

www.gutjnl.com