Problem based learning in continuing medical education: a review of controlled evaluation studies
Smits, P.B.A.; Verbeek, J.H.A.M.; de Buisonjé, C.D.

Published in:
BMJ : British medical journal

DOI:
10.1136/bmj.324.7330.153

Citation for published version (APA):
Problem based learning in continuing medical education: a review of controlled evaluation studies

P B A Smits, J H A M Verbeek and C D de Buisonjé

BMJ 2002;324:153-156
doi:10.1136/bmj.324.7330.153

Updated information and services can be found at:
http://bmj.com/cgi/content/full/324/7330/153

These include:

Data supplement
“Details of criteria used”
http://bmj.com/cgi/content/full/324/7330/153/DC1

References
This article cites 22 articles, 5 of which can be accessed free at:
http://bmj.com/cgi/content/full/324/7330/153#BIBL

9 online articles that cite this article can be accessed at:
http://bmj.com/cgi/content/full/324/7330/153#otherarticles

Rapid responses
You can respond to this article at:
http://bmj.com/cgi/eletter-submit/324/7330/153

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Topic collections
Articles on similar topics can be found in the following collections
Continuous professional development (198 articles)
Other Medical Education (345 articles)
Undergraduate (235 articles)
Teaching (110 articles)

Notes

To order reprints of this article go to:
http://www.bmjjournals.com/cgi/reprintform

To subscribe to BMJ go to:
http://bmj.bmjjournals.com/subscriptions/subscribe.shtml
Problem based learning in continuing medical education: a review of controlled evaluation studies

P B A Smits, J H A M Verbeek, C D de Buisenjé

Problem based learning is one of the best described methods of interactive learning, and many claim it is more effective than traditional methods in terms of lifelong learning skills, and is more fun.1 In the early 1990s, four systematic reviews of undergraduate medical education cautiously supported the short term and long term outcomes of problem based learning compared with traditional learning.2-5 Since then, many medical curricula have changed to problem based learning, but a recent review has questioned the value of problem based learning in undergraduate medical education.6

Postgraduate and continuing medical education differ from undergraduate education in that they go beyond increasing knowledge and skills to improving physician competence and performance in practice, ultimately leading to better patient health.7 Problem based learning may also be effective in this context.8 There is some evidence that interactive sessions can change professional practice, but there have been few well conducted trials.9,10

We could find no reviews of the effectiveness of problem based learning in continuing medical education. Controlled evaluation studies provide the best evidence of effectiveness of educational methods, in line with the movement of best evidence medical education.11 We therefore conducted a systematic review of the literature to find out if there is evidence that problem based learning in continuing medical education is effective.

Methods

Literature search

We searched the databases Medline, Embase, Psyclit, the Educational Resources Information Centre (ERIC), the Cochrane Library, and the Research and Development Resource Base in CME on the Internet (RDRBWEB) from 1974 (the year Neufeld and Barrows published their new approach to medical education) to August 2000. We searched for studies with the keywords “problem-based (PBL),” “practice-based,” “self-directed,” “learner centred,” and “active learning.” We combined the search results with another search using the keywords “continuing medical education (CME),” “continuing professional development (CPD),” “post-professional,” “postgraduate,” and “adult learning.” Finally, we conducted a manual search of relevant references in the included studies.

Summary points

Reviews of undergraduate medical education cautiously support the short term and long term outcomes of problem based learning compared with traditional learning

The effectiveness of problem based learning in continuing medical education, however, has not been reviewed

This review of controlled evaluation studies found limited evidence that problem based learning in continuing medical education increased participants’ knowledge and performance and patients’ health

There was moderate evidence that doctors are more satisfied with problem based learning

Inclusion criteria

We included studies in which the author(s) had indicated that the educational intervention was problem based and in which the learning process in essence resembled the methods used at McMaster University or the University of Maastricht.12-15 This consists of a tutor facilitated, problem based learning session in which a small, self directed group starts with a brainstorming session. A problem is posed that challenges their knowledge and experience. Learning goals are formulated by consensus, and new information is learnt by self directed study. It ends with a group discussion and evaluation.

For this review, we included keywords to find relevant educational articles in the total domain of postgraduate and continuing medical education and continuing professional development. We scanned all the studies collected for controlled trials with a pretest/post-test design. Because of the small number of randomised trials, we did not exclude other types of controlled trial. With this strategy, we hoped to find all relevant controlled studies on problem based learning in continuing medical education.

Review method of selected studies

Two reviewers (PBAS and JHAMV) independently assessed the quality of the studies using five quality
Mean (SD) score of 5.8 (0.9) on 7 point scale for PBL group.

75/78 participants reported 127 practice changes as result of PBL.

PBL group’s post-intervention scores compared with own pre-intervention scores.

Only participants’ performance tested on follow up.

Information from author, not given in article.

Only participants’ knowledge tested on follow up.

P value not given in article.

No information on number who completed knowledge test at end of trial.

RCT=Randomised controlled trial. CT=Controlled trial. PBL=Problem based learning. NA=Not assessed.

Results of literature search

Six controlled trials met our inclusion criteria. A manual search of references from these studies did not yield any new trials that met our criteria. Five of the studies assessed the effect of continuing medical education on general practitioners. Four studies contained over 50 participants, and two had fewer than 20.

Table 1 shows the results of our quality assessment of the six studies. Two studies were of “high” quality, and the others were “low.” Two of the trials were randomised trials. In Heale et al’s study, however, the group of randomly allocated doctors was combined with a group who did not want to participate in the entire study. Whether the randomisation is valid in terms of equality of groups is unclear.

Results of studies

Table 2 shows the results of the six studies. Outcome measurement was often restricted to only one variable. No study measured both the preferred outcome variables—participants’ performance and patients’ health. In one of the high quality studies—problem

<table>
<thead>
<tr>
<th>Study</th>
<th>Study design</th>
<th>Educational intervention</th>
<th>No of participants</th>
<th>Outcome variables (PBL v control)</th>
<th>Follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chan et al (1994)</td>
<td>RCT</td>
<td>Email PBL</td>
<td>10</td>
<td>Participants’ knowledge</td>
<td>NA</td>
</tr>
<tr>
<td>Heale et al (1988)</td>
<td>RCT</td>
<td>Small group</td>
<td>5</td>
<td>No effect</td>
<td>No effect</td>
</tr>
<tr>
<td>Doucet et al (1993)</td>
<td>CT</td>
<td>PBL</td>
<td>0</td>
<td>Higher†</td>
<td>NA</td>
</tr>
<tr>
<td>Benjamin et al (1996)</td>
<td>CT</td>
<td>PBL</td>
<td>15</td>
<td>Higher†</td>
<td>NA</td>
</tr>
<tr>
<td>Moran et al (1994)</td>
<td>CT</td>
<td>Learner centered</td>
<td>10</td>
<td>Positive**</td>
<td>NA</td>
</tr>
<tr>
<td>Premi et al (1994)</td>
<td>CT</td>
<td>Practice based small</td>
<td>5</td>
<td>Positive†</td>
<td>High score§</td>
</tr>
</tbody>
</table>

RCT=RANDOMISED controlled trial. CT=CONTROLled trial. PBL=PROBLEM based learning. NA=NOT assessed.

*No information on number who completed knowledge test at end of trial.

†P value not given in article.

‡Only participants’ knowledge tested on follow up.

| Information from author, not given in article.

§Only participants’ performance tested on follow up.

**PBL group’s post-intervention scores compared with own pre-intervention scores.

††175/78 participants reported 127 practice changes as result of PBL.

‡‡Mean (SD) score of 5.8 (0.9) on 7 point scale for PBL group.
based learning via email versus use of internet resources—neither educational programme increased participants’ knowledge, but group size was small.25 The other high quality study—problem based versus lecture based learning—showed positive results for problem based learning in terms of participants’ knowledge, clinical reasoning, and satisfaction.17 It is unclear whether these effects can be attributed to the problem based learning format, however, because of differing periods of educational exposure.

Table \ref{table:3} shows the level of evidence we found for the outcome variables. With the three studies that compared problem based learning with another educational format, we found no evidence that problem based learning affected participants’ knowledge and performance and moderate evidence that it increased participants’ satisfaction. None of the studies measured patients’ health. The other three studies compared problem based learning with no educational intervention and were of low quality. They show limited evidence that problem based learning was effective in improving participants’ knowledge and performance and patients’ health (table \ref{table:3}). Differing degrees of satisfaction cannot be compared in this study design.

Conclusions

We found few relevant studies, of varying quality. There is no consistent evidence that problem based learning in continuing medical education was superior to other educational strategies in increasing doctors’ knowledge and performance but moderate evidence that it led to higher satisfaction. There is limited evidence that problem based learning increased doctors’ knowledge and performance and patients’ health more than no educational intervention at all.

However, the studies in which the control group received no educational intervention can give information only on the effects of receiving education, not on the specific educational method. With the studies that compared problem based learning with another method, in order to deduce that one educational intervention is more effective, the content, process, and influencing variables in both interventions must be clearly stated. The information on the educational interventions given in the three studies can be rated as completely absent,22 poor,16 and reasonable.17

In studies not restricted to problem based learning, there is some evidence that interactive educational methods in continuing medical education are more effective in changing doctors’ performance and patients’ health.21 The results of this literature study on problem based learning in continuing medical education seem to be comparable with those on problem based learning in undergraduate medical education.14

Studying the effectiveness of education is complex,22 23 but we should be able to perform studies of higher quality than those reviewed here, especially when comparing educational methods. As our review found, it is apparently not impossible to randomise participants to different educational methods. We have to do better in defining an educational method and controlling what actually happens in educational practice. We also have to clarify the aims of our education. Is our objective to increase knowledge, change attitudes, or improve health care? Outcome variables should correspond with our objectives, and preferably several different variables should be measured, including participants’ performance and patients’ health.8

There seems to be agreement that a small significant effect found is evidence of effectiveness.21 24 Evaluation is further complicated by professional and social context, as is shown in research on implementation of guidelines.24 This calls for randomisation, because observational studies can easily be biased by these factors.

Contributors: PBAS coordinated the systematic review, formulated the study hypothesis, assessed the searches, assessed the quality of studies, and wrote the article. JHAMV initiated the review, helped formulate the study hypothesis, supervised the systematic approach of the review, reported on the results, and helped write the article. CDdB helped formulate the study hypothesis, performed the searches, and made a first review and draft of the study results. PBAS and JHAMV are guarantors for this article.

Funding: This study was supported by the Netherlands Organisation of Scientific Research (NWO) as part of the priority programme on fatigue and work and by the Netherlands School of Occupational Health.

Competing interests: None declared.

Table \ref{table:3} Level of evidence on outcome variables measured in six studies evaluating effectiveness of problem based learning in continuing medical education

<table>
<thead>
<tr>
<th>Outcome variable</th>
<th>High quality studies</th>
<th>Low quality studies</th>
<th>Level of evidence*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive result</td>
<td>Negative result</td>
<td>Positive result</td>
</tr>
<tr>
<td>Problem based learning vs other educational interventions</td>
<td>Participants’ knowledge</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Participants’ performance</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Participants’ satisfaction</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Patients’ health</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Problem based learning vs no educational intervention</td>
<td>Participants’ knowledge</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Participants’ performance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Patients’ health</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Possible levels of evidence: strong, moderate, limited, or none (see Methods for details).

\begin{thebibliography}{99}
\bibitem{2} Allsanee MA, Mitchell S. Problem based learning: a review of literature on its outcomes and implementation issues. \textit{Acad Med} 1995;60:52-81.
\bibitem{4} Berkooi L. Problem based learning: have the expectations been met? \textit{Acad Med} 1993;68:579-88.
\bibitem{5} Norman GR, Schmidt HG. The psychological basis of problem-based learning: a review of evidence. \textit{Acad Med} 1993;67:557-63.
\bibitem{11} Wolf FM, Shea JA, Allsanee MA. Towards setting a research agenda for systematic reviews of evidence of the effects of medical education. \textit{Teach Learn Med} 2001;13:54-60.
\bibitem{12} Maudsley G. Do we all mean the same thing by problem-based learning? A review of the concepts and formulation of the ground rules. \textit{Acad Med} 1994;71:178-85.
\end{thebibliography}
Learning in practice

Albanese MA. Problem-based learning: why curricula are likely to show little effect on knowledge and clinical skills. *Med Educ* 2000;34:729-38.

Learning needs assessment: assessing the need

Janet Grant

Learning needs assessment has a fundamental role in education and training, but care is needed to prevent it becoming a straitjacket

It might seem self evident that the need to learn should underpin any educational system. Indeed, the literature suggests that, at least in relation to continuing professional development, learning is more likely to lead to change in practice when needs assessment has been conducted, the education is linked to practice, personal incentive drives the educational effort, and there is some reinforcement of the learning. Learning needs assessment is thus crucial in the educational process, but perhaps more of this already occurs in medical education than we suspect. The key lesson might be for those who design new systems of education and training; for example, the postgraduate education allowance system in general practice was felt to fail the profession because it did not include needs assessment and so led to ad hoc education to fulfill the time requirements of the system rather than the needs of individual doctors or the profession as a whole. On the other hand, basing learning in a profession entirely on the assessment of needs is a dangerous and limiting tactic. So a balance must be struck.

Learning needs assessment in medicine

In 1998 both individual and organisational needs assessment became part of government policy in relation to the continuing professional development and personal development plans of all healthcare professionals. Thus, it has a role in the clinical governance of the service and is therefore much more than an educational undertaking. This integration of needs assessment, education, and quality assurance of the service was first made explicit in 1989 in relation to clinical audit, which would identify practices in need of improvement and ensure that educational and organisational interventions were made to address these needs. Accordingly, audit was described as “essentially educational” and the educational process surrounding it described.

Long before these recent developments, needs assessment outside medicine was presented as an important part of managed education and learning contracts, which are the predecessors of the personal development plans to be developed for all NHS healthcare professionals. In his descriptions of adult learning Knowles assumed (he did not claim to have research evidence) that learners needed to feel a necessity to learn and that identifying one’s own learning needs was an essential part of self directed learning. In medicine a doctor’s motivation to learn would therefore derive from needs identified during his or her experience of clinical practice. So the pedigree and practice of learning needs assessment, if not the evidence, are well established.

The definition of need

As in most areas of education, for many years there has been intense debate about the definition, purpose,