Step response and transient isotopic labeling studies into the mechanism of CO oxidation over La0.8Ce0.2MnO3 perovskite

Zhang, Y.; van der Zande, L.M.; Castricum, H.L.; Bliek, A.

Published in:
Applied Catalysis B-Environmental

DOI:
10.1016/j.apcatb.2004.02.008

Citation for published version (APA):
Zhang, Y., van der Zande, L. M., Castricum, H. L., & Bliek, A. (2004). Step response and transient isotopic labeling studies into the mechanism of CO oxidation over La0.8Ce0.2MnO3 perovskite. Applied Catalysis B-Environmental, 54(2), 93-103. DOI: 10.1016/j.apcatb.2004.02.008

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Step response and transient isotopic labelling studies into the mechanism of CO oxidation over La$_{0.8}$Ce$_{0.2}$MnO$_3$ perovskite

Y. Zhang-Steenwinkel, L. M. van der Zande, H. L. Castricum, A. Bliek*

Department of Chemical Engineering, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands

Corresponding author: A. Bliek,
Tel: 31-20-5256479
Fax: 31-20-5255604
bliek@science.uva.nl
The mechanism of CO oxidation over La$_{0.8}$Ce$_{0.2}$MnO$_3$ perovskites has been studied using step-response analysis. As these materials pair a high catalytic activity with high hydrothermal stability, perovskites are well-known full oxidation catalysts and form a potential alternative to Pt-Rh based three-way catalysts. Transient isothermal reduction and oxidation studies demonstrate the full reversibility of oxygen uptake at temperatures of 473 K and higher. Using isotopically labelled O$_2$, the participation of oxygen from the perovskite lattice could be demonstrated. It is proposed that stable species - most likely bidentate carbonates- are retained on the reduced oxide surface. The highly defective perovskite structure enables rapid exchange between oxygen atoms from surface carbonate and perovskite lattice oxygen. CO oxidation towards CO$_2$ tentatively proceeds through the ER (Eley-Rideal) followed by LH (Langmuir-Hinshelwood) mechanism. In steady state conditions, the formation of CO$_2$ is most likely through the formation of intermediate carbonate since considerable amounts of C16O16O and C16O18O are formed.

Keywords: La$_{0.8}$Ce$_{0.2}$MnO$_3$, perovskite, reduction, oxidation, labelled oxygen, CO oxidation, transient
1. INTRODUCTION

Perovskite-type oxides (ABO$_3$) containing rare earth ions and transition metals are of interest for catalytic oxidation and reduction reactions associated with automotive exhaust emission control [1-4]. They have been tested in oxidation of CO and hydrocarbons [5-8], NO$_x$ reduction [9, 10], and in hydrogenation and hydrogenolysis reactions [11]. By partial substitution of A and B ions of the perovskite with others, a wide variety of mixed oxides $\text{A}_{1-x}\text{A'}_x\text{B}_{1-y}\text{B'}_y\text{O}_3$ can be obtained, allowing the systematic modification of the catalytic properties [6, 12].

CO oxidation has been widely used as a model reaction to shed light on the mechanism of full oxidation over perovskite-type oxides. Early studies on the CO oxidation over perovskites were carried out by Parravano [13]. Research was stepped up in recent years [4,5,8,14-17] in view of the potential application as noble metal free automotive catalysts. For a number of perovskite oxides, it has been attempted to correlate the activity in CO oxidation and the electronic state of the transition metal ions as well as the defect chemistry [17, 18]. It has been postulated that the coexistence of A-sites, oxygen vacancies adjacent to a transition metal ion, and altervalent ions of the same metal form the essential structure for catalytic activity. Studies into the mechanism of CO adsorption have been plentiful [14,15,19-22]. Kawai et al. [14] concluded that CO$_2$ desorption is the rate-determining step of the overall reaction on the surface of BaTiO$_3$ in the temperature range 353 K – 493 K. Voorhoeve et al. [15] suggested that oxidation of CO over perovskite-type oxides of 3d transition metals is an example of suprafacial catalysis, in which the electronic band structure near the Fermi level is believed to play a key role. Tascón et al. [19] observed that CO and CO$_2$ adsorb on the same surface O$^{2-}$ sites while oxygen adsorbs on surface metallic ions of the LaCoO$_3$.
A clearer picture of the reaction mechanism may be obtained by separately investigating reduction and re-oxidation, using step response analysis. In this way, information is obtained on the elementary steps of a reaction, since the time-resolved observations allow quantitative assessment of the accumulation of species on the surface [23, 24]. In particular, transient studies have found widespread application in “three-way” catalysis, since these automotive catalysts inherently work under dynamic conditions [23-29].

In this work, the interaction of CO and O₂ with La₀.₈Ce₀.₂MnO₃ prepared by co-precipitation is studied by step-response to obtain insight into the elementary steps of isothermal reduction/oxidation of this perovskite with CO and O₂, respectively. This study was extended with the use of labelled and unlabelled oxygen, thereby further elucidating the role of lattice oxygen.

2. EXPERIMENTAL

2.1 Catalyst preparation and gases

The following gases were used (all obtained from Praxair): helium (1% Ar in He, 99.999% pure), carbon monoxide (1% CO in He, 99.95%), unlabelled oxygen (1% O₂ in He, 99.5%), labelled oxygen (5% ¹⁸O₂ in He, 95%) and carbon dioxide (1% CO₂ in He, 99.5%). CO was pre-treated first by active carbon at 373 K to trap the formed iron carbonyl, which can cause the deactivation of the catalyst.

La₀.₈Ce₀.₂MnO₃ perovskites were prepared from known (niet ‘ the corresponding ‘?) molar ratios of La(NO₃)₃·6H₂O (ACROS, 98+ % pure), Ce(NO₃)₃·6H₂O (ALDRICH, 99 %) and Mn(NO₃)₂·6H₂O (MERCK 99 %) solution [30]. Precipitation was carried out by slowly adding the nitrate solution (0.5 N) together with a NaOH (MERCK >99 %) and H₂O₂ (ANALAR, 30 % w/v H₂O₂) solution (0.5 N) into 600 ml of doubly distilled water at pH = 9.1 and 323 K. The precipitate was subsequently dried overnight at 393 K, powdered, filtered
and then calcined at 1073 K for 6 hours. During calcination the colour of the sample changed from brown to black.

X-ray diffraction patterns (XRD) collected on a CPS120 using a primary monochromator with 2θ = 5 – 125°, using CuKα radiation, confirmed the formation of the perovskite structure. The surface area was determined by nitrogen adsorption at 77 K on a Sorptomatic 1990 (CE Instruments) and evaluated using the BET equation. The average particle size was determined by means of Hg porosimetry on a Carlo Erba Porosimeter 4000.

2.2 Set-up for Transient experiments

The step response set-up is represented schematically in figure 1. The apparatus consists of a gas feed, a reactor and an on-line gas analysis section. The gas feed section equipped with mass flow controllers contains two gas-blending systems to allow the generation of two different feed streams. The step change is carried out through a high-speed chromatographic-type 4-way valve (V₁), driven by helium. For the step response experiments, one feed stream contains 1 vol% CO in helium and the other one comprises 1 vol% O₂ in helium. This valve (V₁) allows one feed stream to be fed to the reactor while the other one is directed towards the vent. The gas stream selected by V₁ is directed toward a 6-way chromatographic valve (V₂). The feed entering valve V₂ can then be switched through the reactor filled with the catalyst bed or to the blank reactor. The blank reactor is used for calibration of mass spectrometer with a mixture of a known composition at the reaction temperature, and also for taking the various background signals in the reaction mixture. The back-pressure controller and a U-tube were used to avoid an overshoot in the desired step function at the time of switch.

The catalyst was placed in a quartz reactor with a 5 mm internal diameter. The length of all tubing connecting V₁, V₂ and the inlet system (i.e., capillary tube) of the mass
spectrometer must be minimised in order to avoid dispersion effects. For the same reason, the catalyst bed was diluted with two times its weight of glass beads (d_p = 0.15-0.18 mm). In order to create isothermal operating conditions, an inoxyda cylinder was placed around the reactor. The inoxyda cylinder contains a thermocouple to monitor the temperature in the furnace.

The product gas was analysed by a quadrupole MS (Balzers, QMG 420). The background signal is subtracted from the obtained MS signal. Also the fragmentation contributions (such as CO_2 + CO) and mass spectrometer sensitivity for the different molecules were taken into account. The corrected data are presented here as molar concentrations.

2.3 Experimental procedures in transient studies

The experiments presented here were carried out in a temperature range of 448 K to 523 K, 1.5 bar total pressure and a total flow rate of 100 ml·min⁻¹. First, the samples were pre-treated in-situ: 100 mg of La_{0.8}Ce_{0.2}MnO_3 perovskite diluted with 200 mg of glass beads was heated to 773 K (10 K·min⁻¹) in a He flow containing 1vol% of O_2 and kept at that temperature for one hour, and subsequently cooled to the reaction temperature. This pre-treatment provided fully oxidised catalysts. Subsequently, these catalysts were flushed with He and subjected to the reaction step sequence (figure 2). Both the reducing and oxidising gas mixture as well as the helium were passed over the catalyst bed for 300 seconds.

The reducing and oxidising feed was calibrated with a calibration gas mixture (CO/O_2/He, v/v/v = 1/1/98, Praxair). The amount of CO_2 formed in each step was calculated by integrating the area under the CO_2 production curve. The total amount of CO +CO_2 (∑CO_x) adsorbed on the catalyst after either step 1 or 3 was obtained by subtracting the integrated area under the CO and CO_2 response curves from that of the CO feed and 1 vol% CO_2, respectively. The CO and CO_2 concentration were calibrated against a standard gas
mixture. The amount of adsorbed O_2 after step change 2 and 4 was obtained in a similar way.

In order to check whether the reaction is controlled by external mass transport limitations, the catalyst weight (100 mg – 50 mg) and flow rate (100 ml·min$^{-1}$ – 50 ml·min$^{-1}$) were varied. As at 523 K the CO conversion remains unaffected, external mass transport limitations are clearly absent (not shown). The reaction order in CO was determined by varying the CO concentration (0.5-1.0-1.5-2.0 vol%) in excess oxygen (3 vol%). Similarly, the reaction order in oxygen was determined by changing the oxygen concentration (0.5-1.0-1.5-2.0 vol%) in 2 vol% CO with helium as balance.

The reduction/oxidation behaviour of this perovskite was also studied by using labelled oxygen at 523 K. Finally, CO oxidation experiments were performed using labelled oxygen at 523 K for a gas mixture of 1 vol% CO, 2 vol% $^{18}O_2$ in He with flow rate of 50 ml·min$^{-1}$.

3. RESULTS

3.1 Catalyst characterisation

The crystallinity of the prepared sample investigated by XRD shows that cerium is not totally incorporated in the perovskite lattice. A small amount of a separate CeO$_2$ phase is formed beside the perovskite structure (not shown). The surface area was determined to be 25 m2·g$^{-1}$. Hg porosimetry showed a broad distribution with sizes between 20 nm and 25 µm, with a very strong contribution of dimensions around 1µm. A fractal-like structure has earlier been observed by SEM (not shown), with particles in the order of 120 nm, which constitute the overall structure. Most clusters are thus likely in the order of 1µm.

3.2 Isothermal reduction and oxidation of La$_{0.8}$Ce$_{0.2}$MnO$_3$

3.2.1 Step 1: reduction with CO
The response of the oxidised La$_{0.8}$Ce$_{0.2}$MnO$_3$ perovskite to reducing conditions is investigated by a step change from He to a CO/He mixture. CO$_2$ is formed instantaneously, the CO$_2$ production reaching a maximum and then slowly declining to zero (figure 3a). The CO concentration increases from zero to the feed CO concentration (figure 3b). The amounts of CO consumed and CO$_2$ produced are listed in table 1. Notice that not all CO consumed is converted into CO$_2$, indicating that some CO has been retained on the catalyst surface, either in the form of adsorbed CO or CO$_2$, or in the form of carbonates. When the gas mixture is switched back to He, neither CO nor CO$_2$ are seen to desorb. The retained CO leaves the oxide surface as CO$_2$ during heating in helium in a temperature range of 500 K – 700 K, suggesting that CO has become strongly bound to the catalyst in the form of bidentate carbonates.

3.2.2 Step 2: re-oxidation with O$_2$

Following reduction in CO and a flush with He, the gas mixture was switched to the oxidative feed. During this re-oxidation step, the irreversibly retained CO leaves the catalyst completely as CO$_2$ (table 1), as the amount of CO$_2$ produced is almost equal to the amount of CO retained in step (1). No CO desorption is observed. As the amount of oxygen consumed in step 2 is equal to the amount of CO consumed in step 1, the catalyst is entirely re-oxidised. In contrast, at temperatures below 448 K, re-oxidation remains incomplete. A delay in time is observed for both CO$_2$ production and the oxygen response (figure 4a). Oxygen breakthrough is observed only after the CO$_2$ concentration has reached a maximum (figure 4b). No oxygen is seen to desorb when the gas composition is switched from oxygen to He.

3.2.3 Step 3 and 4
The CO and CO\textsubscript{2} response in step 3 after re-oxidation in oxygen is fairly similar to that following a step change over the fully oxidised catalyst, step 1. The response to step 4 is identical to that of step 2, indicating that the reduction and oxidation of this catalyst are completely reversible and very quickly in transient experiments a cyclic steady state is reached. Further reduction and re-oxidation cycles demonstrated full reproducibility.

3.3 Isothermal reduction/oxidation of La\textsubscript{0.8}Ce\textsubscript{0.2}MnO\textsubscript{3} using 18O\textsubscript{2}

Reduction/oxidation behaviour of the catalyst was further investigated using labelled oxygen in subsequent reduction/re-oxidation experiments at 523 K. Figure 5a shows the CO and unlabelled CO\textsubscript{2} concentration at the reactor outlet in time at a period of 300 s. The amount of CO consumed and CO\textsubscript{2} produced in first step change is identical to the first cycle in the previous experiment, since the same CO concentrations were used and the oxidation in the pre-treatment was carried out with unlabelled oxygen. During the oxidation step with labelled oxygen, mostly C16O16O is produced (figure 5b). Smaller amounts of C18O16O and C18O18O were formed as well, their response being somewhat delayed with respect to the C16O16O response.

The second reduction cycle (figure 6a) provides insight in the oxygen exchange during re-oxidation. C16O16O, C18O16O and C18O18O are formed instantaneously after the step change. When the C16O concentration in the outlet returns to its original level, the release of C16O16O, C18O16O and C18O18O decline to zero. Surprisingly, a significant amount C15O16O is still present during the second reduction step, while re-oxidation of the surface has been carried out with labelled oxygen.

The second re-oxidation step is in essence similar to the first re-oxidation step (figure 6b). A slightly larger amount of labelled CO\textsubscript{2} can however be observed in an early stage, along with C16O16O production.
3.4 CO oxidation with labelled oxygen

The response of CO oxidation for a CO/\(^{18}\)O\(_2\)/He mixture is shown in figure 7. The background signal is subtracted from the obtained MS signal and subsequently corrected for the inlet pressure, using Ar as a reference gas. Following the step change from He to the gas mixture, C\(^{16}\)O\(^{16}\)O is formed in two steps. The labelled oxygen response curve shows an increase to a maximum value and a subsequent decrease, accompanying the appearance of C\(^{18}\)O\(^{16}\)O and C\(^{18}\)O\(^{18}\)O in the outlet gas. Surprisingly, the formed C\(^{16}\)O\(^{16}\)O approaches a constant value after going through a maximum, instead of decreasing to zero, as would be the result of the exhaustion of the available unlabelled oxygen. The signals have been followed for more than 600 s, but no changes were observed after the first 100 s.

Under the applied conditions, i.e. near the stoichiometric CO/O\(_2\) ratio, we found first order reaction rates in CO and near-zero order in O\(_2\).

4. DISCUSSION

4.1 Reduction/oxidation with C\(^{16}\)O, \(^{16}\)O\(_2\) and \(^{18}\)O\(_2\) of La\(_{0.6}\)Ce\(_{0.2}\)MnO\(_3\)

Involvement of subsurface oxygen in the reduction steps can be concluded, since the amount of oxygen consumed is 6 times higher than that expected for the reduction of Mn\(^{4+}\) to Mn\(^{3+}\). The tail in the response curves of CO\(_2\) appearing in the reduction steps can be explained by a slower reaction with these subsurface oxygen atoms.

Highly thermally stable carbonate species i.e., bidentate carbonates are formed on the partially reduced oxide surface, since retained carbon species desorbs as CO\(_2\) at a temperature higher than 500 K. Similar stable carbonate species have been reported by Tejuca et al. [21] on LaMnO\(_3\). Formation and decomposition of carbonate structures have also been found for LaCoO\(_3\) [11, 31].
The existence of carbonate species on the reduced surface of catalyst is further confirmed by using labelled oxygen. The formation of C18O16O during either reduction or oxidation can be explained by dissociate adsorption of labelled 18O$_{2}$ (equation 1). However, the formation of both C16O16O and C18O18O in re-oxidation step can only be explained by decomposition and desorption of the carbonates. The presence of C16O16O indicates a rapid exchange between oxygen from the carbonates with lattice oxygen. A delay in CO$_{2}$ production suggests that desorption of CO$_{2}$ from the reduced surface is the rate-limiting step here. The formation of both C18O16O and C18O18O indicates that the oxygen in the carbonate bond can either be replaced by surface/subsurface oxygen or by adsorbed-labelled oxygen, as described in equations 2-5, in which “g” represents the gas phase and “s” the surface site.

\[
^{18}O_{2(g)} \rightarrow ^{18}O_{2(s)} \rightarrow 2^{18}O_{(s)} \quad (1)
\]

\[
C^{16}O_{3(s)} + ^{18}O_{(s)} \rightarrow C^{16}O^{16}O^{18}O_{(s)} + ^{16}O_{(s)} \quad (2)
\]

\[
C^{16}O^{16}O^{16}O_{(s)} \rightarrow C^{15}O^{16}O_{(g)} + ^{16}O_{(s)} \quad (3)
\]

\[
C^{16}O^{16}O^{18}O_{(s)} + ^{18}O_{(s)} \rightarrow C^{16}O^{16}O^{18}O_{(s)} + ^{16}O_{(s)} \quad (4)
\]

\[
C^{16}O^{18}O^{16}O_{(s)} \rightarrow C^{15}O^{18}O_{(g)} + ^{16}O_{(s)} \quad (5)
\]

During the second reduction step, C16O16O, C18O16O and C18O18O appear instantaneously. Appearance of large amount of C16O16O indicates again rapid exchange between surface and subsurface oxygen (equation 6), in which “ss” represent the subsurface site.

\[
^{18}O_{(s)} + ^{16}O_{(ss)} \rightarrow ^{16}O_{(s)} + ^{18}O_{(ss)} \quad (6)
\]

The high mobility of oxygen in the perovskite lattice can be explained by its highly defective structure due to the presence of incorporated Ce ions [30]. A small amount of labelled CO$_{2}$ desorbs during an earlier stage in the second re-oxidation step, indicating that some 18O has already been built into the lattice.
4.2 CO oxidation with labelled oxygen 18O$_2$

The oxidation of carbon monoxide over perovskite-type oxides has widely been studied [11, 32-35]. The reaction scheme for the catalytic CO oxidation over LaCo$_{1.4}$Cr$_{0.6}$O$_3$ according to Tilset et al. [35] must involve reduction and re-oxidation of the catalyst, which is also confirmed by our work.

The appearance of C16O16O in outlet gas stream immediately after switching from inert to reactants is the result of the reduction of the oxide via an ER (Eley-Rideal) mechanism, as shown in equation 7. It seems that the desorption of CO$_2$ is very fast. Subsequently, CO can adsorb on the partially reduced surface and react with surface oxygen to form CO$_2$, followed by CO$_2$ desorption, as described in equation 8 and 9 through a LH (Langmuir-Hinshelwood) mechanism. (Labelled) 18O$_2$ adsorbs dissociatively on a partially reduced surface (equation 1), and it may also adsorb on the same active site as CO, since the 18O$_2$ concentration in the outlet gas increases after switching from He to reactants and decreases when the CO$_2$ concentration rises in the off-gas stream. Desorption of formed CO$_2$ may regenerate the active site for oxygen adsorption.

$$C^{16}O(g) + ^{16}O(s) \rightarrow C^{16}O_2(g) \quad (7)$$

$$C^{16}O(g) \rightarrow C^{16}O(s) \quad (8)$$

$$C^{16}O(s) + ^{16}O(s) \rightarrow C^{16}O_2(s) \rightarrow C^{16}O_2(g) \quad (9)$$

C18O16O can be formed through a LH mechanism (equation 10). The appearance of C18O18O indicates that CO can adsorb on surface oxide ions, leading to a labile species that interacts with adsorbed atomic oxygen, producing a carbonate structure that then decomposes into (adsorbed) CO$_2$ and oxygen (equation 11 and 12).

$$C^{16}O(s) + ^{18}O(s) \rightarrow C^{16}O^{18}O(s) \quad (10)$$

$$C^{16}O(s) + 2^{18}O(s) \rightarrow C^{16}O^{18}O^{18}O(s) \quad (11)$$
The formation of C16O16O might again be explained by the involvement of oxygen in the perovskite, through an interfacial process due to high oxygen mobility. This is confirmed by the finding of a near-zero reaction order in oxygen for CO oxidation at 523 K, which is a direct indication of the involvement of lattice oxygen. It is in accordance with results of Yao et al. [5] and Chuah et al. [32], and confirms our previous finding [30]. Yao and Chuah found a near-zero reaction order in the partial pressure of oxygen, which suggests the involvement of lattice oxygen from LaMnO$_3$. Finally, CO oxidation via the formation and decomposition of carbonates is likely to be important under steady-state conditions (equation 13 and 14), since the concentration of C16O16O is relatively high, and remains constant after 100 s.

\[
C^{16}O^{18}O_{(x)}^{18}O \rightarrow C^{15}O^{18}O_{(x)}^{16}O + ^{16}O_{(x)}^{16} \rightarrow C^{15}O^{18}O_{(g)}^{16}O + ^{16}O_{(x)}^{16} \tag{12}
\]

\[
C^{16}O^{18}O_{(x)}^{18}O + ^{16}O_{(x)}^{16} \rightarrow C^{15}O^{18}O_{(x)}^{16}O + ^{18}O_{(x)}^{16} \tag{13}
\]

\[
C^{16}O^{16}O_{(x)}^{18}O \rightarrow C^{15}O^{16}O_{(x)}^{16}O + ^{18}O_{(x)}^{16} \rightarrow C^{15}O^{16}O_{(g)}^{16}O + ^{18}O_{(x)}^{16} \tag{14}
\]

4.3 Kinetics of catalytic CO oxidation

The Arrhenius plot obtained from the initial rate of CO$_2$ formation during isothermal transient reduction step shows an apparent activation energy of 12.5 kJ·mol$^{-1}$ (figure 8), assuming an Arrhenius temperature dependence for the reaction rate at maximum peak height. This value is close to the apparent activation energy of 16-19 kJ·mol$^{-1}$ on LaMnO$_3$ in the temperature range of 333 K – 573 K at low oxygen pressure [32]. However, an activation energy of 63.0 kJ·mol$^{-1}$ was found for the CO oxidation reaction over the perovskite in a temperature range of 348 K to 498 K under stoichiometric conditions (figure 9). This activation energy is of the same order as that observed by Chan et al. [33] for LaMnO$_3$ (66.1 kJ·mol$^{-1}$) in the temperature range of 373 K – 523 K.
When the CO₂ desorption is considered to be the rate determining step, the elementary reactions are:

\[
\begin{align*}
\text{O}_2 + 2 \text{ s} & \xrightleftharpoons[k_{-1}]{k_1} 2 \text{ O}_2 \\
\text{CO} + \text{ s} & \xrightleftharpoons[k_{-2}]{k_2} \text{ CO}_2 \\
\text{CO}_2 + \text{ O}_s & \xrightleftharpoons[k_{-3}]{k_3} \text{ CO}_2 + \text{ s} \\
\text{CO}_2 + \text{ s} & \xrightarrow[k_{-4}]{k_4} \text{ CO} + \text{ s}
\end{align*}
\]

\[R = \frac{Nk_1K_1^2K_2K_3P_{\text{CO}}P_0^{\frac{1}{2}}}{(1+K_1^2P_{O_2}^{\frac{1}{2}}+K_2P_{\text{CO}}+K_3^2K_2K_3P_{\text{CO}}P_0^{\frac{3}{2}})} \quad (15)\]

Assuming that the adsorption of O₂ and CO, and the surface reaction are at quasi-equilibrium and the desorption of CO₂ as the rate determining step is irreversible, the following rate equation can be derived:

\[R = \frac{Nk_1K_1^2K_2K_3P_{\text{CO}}P_0^{\frac{1}{2}}}{(1+K_1^2P_{0_2}^{\frac{1}{2}})} \quad (16)\]

Since the reaction is first order in CO concentration, it indicates that K₂ is very small. Thus, K₂ can be neglected. The obtained reaction rate equation is:

\[R = \frac{Nk_1K_1^2K_2K_3P_{\text{CO}}P_0^{\frac{1}{2}}}{(1+K_1^2P_{0_2}^{\frac{1}{2}})} \quad (17)\]

For high oxygen concentration in the gas mixture, the reaction rate equation is expressed as followed:

\[R = Nk_4K_3P_{\text{CO}} \quad (18)\]

The obtained overall activation energy is then given as:

\[E_{a,overall} = E_4 + (E_2 - E_0) + (E_3 - E_{-3}) \quad (19)\]

For a low oxygen concentration in the gas phase, the reaction rate is:
\[R = N k_{\text{CO}} \frac{1}{K_1 K_2 P_{\text{CO}} P_{\text{O}_2}} \quad (19) \]

The obtained overall activation energy changes to:

\[E_{\text{a,overall}} = E_4 + \left(\frac{E_1}{2} - \frac{E_1}{2} \right) + (E_2 - E_2) + (E_3 - E_3) \quad (20) \]

From equations 18 and 20, a decrease of the overall activation energy is found for lower oxygen pressures, which can be attributed to enhanced \(\text{O}_2 \) adsorption on the perovskite surface. This has been confirmed by findings of Chuah et al., who found a much lower activation energy (16-19 kJ\cdot mol\(^{-1}\)) for \(\text{LaMnO}_3 \) at low oxygen partial pressure (CO/\(\text{O}_2/\text{He}, v/v/v = 50/4/46 \) [32]. At zero oxygen partial pressure, we found even lower apparent activation energies. It is likely, however, that here the mobility of surface/subsurface oxygen through the defective perovskite structure plays a dominant role. The fact that only a weak correlation was observed between the specific surface area and the catalytic activity is also indicative for lattice oxygen migration as the rate-determining step [30].

5. CONCLUSION

Using step response and transient isotopic labelling, the mechanism of CO oxidation over a \(\text{La}_{0.8}\text{Ce}_{0.2}\text{MnO}_3 \) perovskite could be partially revealed. Reduction and oxidation of this perovskite have been shown to be completely reversible at temperatures above 473 K. During reduction, CO is retained on the partially reduced perovskite surface in the form of highly stable (most likely bidentate) carbonates. Large amounts of \(\text{C}^{16}\text{O}^{16}\text{O} \) are formed during the second reduction and oxidation steps when using labelled oxygen. This indicates a rapid exchange between surface and subsurface oxygen. Oxygen can adsorb dissociatively on a partially reduced oxide surface. The adsorption of oxygen is enhanced under reducing reaction conditions, giving rise to a low activation energy. Two reaction mechanisms are involved in CO oxidation: the ER- and LH mechanisms. A considerable
amount of C^{16}O^{16}O is formed, indicating the involvement of lattice oxygen due to the high
oxygen mobility through a defective perovskite lattice. This result is in line with the
experimentally observed near-zero reaction order in the oxygen pressure under oxygen
rich conditions, which is a direct indication of the involvement of lattice oxygen. The
formation of both C^{16}O^{16}O and C^{18}O^{18}O under steady-state conditions indicates that the
formation of CO_{2} over La_{0.8}Ce_{0.2}MnO_{3} proceeds over an intermediate carbonate species
that subsequently decomposes.

ACKNOWLEDGEMENT

The financial support of Netherlands Research Council for this project is gratefully
acknowledged. Thanks are due to M.C. Mittelmeijer-Hazeleger for fruitful discussions and
to J. Beckers from the University of Amsterdam and B. van der Linden from the Technical
University of Delft for their technical support.

REFERENCES

CAPTIONS TO FIGURES

Figure 1: Experimental set up for performing step change concentration transient experiments. V_1: high-speed chromatographic-type 4-way valve; V_2: high-speed 6-way chromatographic valve; MFC: mass flow controller; BPC: back-pressure controller; MS: on-line mass spectrometer.

Figure 2: Systematic scheme of step sequences (1) (4) performed over the fully oxidised La$_{0.8}$Ce$_{0.2}$MnO$_3$ perovskite; time interval: 300 s.

Figure 3: CO and CO$_2$ response curves after a step change He 1vol% CO/He over fully oxidised La$_{0.8}$Ce$_{0.2}$MnO$_3$ perovskite, (step 1) in a temperature range from 448 K to 523 K. (a): CO$_2$; (b): CO.

Figure 4: O$_2$ and CO$_2$ response curves following a step change He 1 vol% O$_2$/He over reduced La$_{0.8}$Ce$_{0.2}$MnO$_3$ perovskite (step 2) in a temperature range from 448 K to 523 K. (a) CO$_2$; (b): O$_2$.

Figure 5: Responses of C16O, C16O$_2$, C18O16O, C18O$_2$ and ΣCO$_2$ after a step change He 1 vol% CO/He (step 1) over fully oxidised La$_{0.8}$Ce$_{0.2}$MnO$_3$ perovskite (a), and after a step change He 2 vol% 18O$_2$/He over the reduced catalyst (b), both at 523 K.

Figure 6: Responses of 18O$_2$, C16O$_2$, C18O16O, C18O$_2$ and ΣCO$_2$ after a step change He 1 vol% CO/He (step 3) over re-oxidised catalyst (a), and after a step change He 2 vol% 18O$_2$/He (step 4) over reduced catalyst (b), both at 523 K.

Figure 7: Response curves of 18O$_2$, C16O$_2$, C18O16O and C18O$_2$ in CO oxidation using labelled oxygen at 523 K.

Figure 8: Arrhenius plot of the apparent reaction rate towards CO$_2$ at the maximum peak height after a step change from He to 1 vol%CO/He over fully oxidised La$_{0.8}$Ce$_{0.2}$MnO$_3$.

Figure 9: Arrhenius plot of the apparent reaction rate against reciprocal temperature for La$_{0.8}$Ce$_{0.2}$MnO$_3$; total flow-rate (He:O$_2$:CO = 98:1:1) = 100 ml-min$^{-1}$.
Table 1: The amount of CO₂ produced, CO retained and O consumed in step sequences (1) to (4) over La₀.₈Ce₀.₂MnO₃ perovskite, the concentration of those components is expressed in mol per mol Cerium.

<table>
<thead>
<tr>
<th>T/K</th>
<th>Step (1)</th>
<th>Step (2)</th>
<th>Step (3)</th>
<th>Step (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>He 1%CO/He</td>
<td>He 1%O₂/He</td>
<td>He 1%CO/He</td>
<td>He 1%O₂/He</td>
</tr>
<tr>
<td></td>
<td>0.19</td>
<td>0.13</td>
<td>0.06</td>
<td>0.14</td>
</tr>
<tr>
<td>473</td>
<td>0.25</td>
<td>0.19</td>
<td>0.06</td>
<td>0.25</td>
</tr>
<tr>
<td>498</td>
<td>0.29</td>
<td>0.22</td>
<td>0.07</td>
<td>0.28</td>
</tr>
<tr>
<td>523</td>
<td>0.31</td>
<td>0.24</td>
<td>0.07</td>
<td>0.31</td>
</tr>
</tbody>
</table>
Figure 2

![Bar chart showing CO or O₂ molar concentration % for steps 1 to 4.]

- **Step 1**: CO
- **Step 2**: O₂
- **Step 3**: CO
- **Step 4**: O₂
Figure 3

(a) CO$_2$ outlet molar concentration %

(b) CO outlet molar concentration %

Temperature: 448 K, 473 K, 498 K, 523 K
Figure 4:

(a) CO₂ outlet molar concentration %

(b) O₂ outlet molar concentration %

Temperature: 448 K, 473 K, 498 K, 523 K
Figure 5:

(a)

Outlet molar concentration %

C16O

C16O16O

Time (s)

(b)

Outlet molar concentration %

\(\Sigma\text{CO}_2\)

C18O16O

C18O16O

C18O18O

\(^{18}\text{O}_2\)

Time (s)
Figure 6

(a)

(b)
Figure 7

![Graph showing MS signal (a.u.) over time (s) for different isotopes of oxygen: 18O$_2$, 18O16O, and 18O18O.](image_url)
Figure 8

![Graph showing the relationship between ln(\(r_0 / \text{mol(CO}_2) / \text{mol(Ce)}\)) and 1/T (K\(^{-1}\)). The slope of the line represents the activation energy, \(E_A\), as 12.5 kJ\(\cdot\)mol\(^{-1}\).]
Ea = 63.0 kJ·mol⁻¹

Probeer hier uniformiteit in je figuren aan te leggen, m.n. tussen fig. 8 en 9!