UvA-DARE (Digital Academic Repository)

Functional flexibility of photosystem I in cyanobacteria

Yeremenko, N.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

Chapter 1 General introduction Outline of this thesis 7 28

Chapter 2 A DNA array technique directly acquired from gene sequences to monitor changes in gene expression profiles of *Synechocystis* sp. PCC 6803

*N. Yeremenko, V. Krasikov, S. Tabata, W. F. J. Vermaas, H. C. P. Matthijs* 39

Chapter 3 Specific versus general responses in gene expression of *Synechocystis* sp. PCC 6803 to nutrient limitation and salt stress

*V. Krasikov, N. Yeremenko, H. C. P. Matthijs, S. Tabata, W. F. J. Vermaas, J. Huisman* 53

Chapter 4 Mechanism and function of Photosystem I cyclic electron transport studied by deletion of two hypothetical proteins of *Synechocystis* sp. PCC 6803

*N. Yeremenko, R. Jeanjean, W. Schiefer, M. Havaux, and H. C. P. Matthijs* 89

Chapter 5 A photosystem I *psaFJ* mutant of the cyanobacterium *Synechocystis* sp. PCC 6803 expresses the *isiAB* operon under iron replete conditions

*R. Jeanjean, E. Zuther, N. Yeremenko, M. Havaux, H. C. P. Matthijs, and Martin Hagemann* 


Chapter 6 Photosystem I trimers from *Synechocystis* sp. PCC 6803 lacking the PsaF and PsaJ subunits bind an IsiA ring of seventeen units

*Kouřil, R., Yeremenko, N., D’Haene, S., Yakushevska, A. E., Keegstra, W., Matthijs, H. C. P., Dekker, J. P., and Boekema, E. J.* 

Chapter 7
Accumulation of large aggregates of chlorophyll-binding protein IsiA that are not associated with photosystem I in a psaFJ mutant of the cyanobacterium Synechocystis sp. PCC 6803

Chapter 8
Flexibility of light-harvesting in iron-stressed cyanobacteria

Chapter 9
Summary and Discussion 163
Samenvatting 173
Dankwoord 177