Functional flexibility of photosystem I in cyanobacteria

Yeremenko, N.

Publication date
2004

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
A photosystem I \textit{psaFJ} mutant of the cyanobacterium \textit{Synechocystis} sp. PCC 6803 expresses the \textit{isiAB} operon under iron replete conditions
A photosystem I \textit{psaFJ} mutant of the cyanobacterium \textit{Synechocystis} sp. PCC 6803 expresses the \textit{isiAB} operon under iron replete conditions

Robert Jeanjeana, Ellen Zutherb,1, Nataliya Yeremenkoc, Michel Havauxd, Hans C. P. Matthijsc, and Martin Hagemannb,*

a LCB-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
b Universität Rostock, FB Biowissenschaften, Pflanzenphysiologie, Albert-Einstein-Str. 3a, D-18051 Rostock, Germany
c IBED/AMB, Laboratorium voor Microbiologie, Universiteit van Amsterdam, Nieuwe Achtergracht 127, 1018 WS Amsterdam, The Netherlands
d CEA/Cadarache, DSV, DEVIM, Laboratoire d’Ecophysiologie de la Photosynthèse, UMR 163 CNRS CEA, Univ. Méditerranée-CEA 1000, 13108 Saint-Paul-lez-Durance, France
1Present address: MPI für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm (Germany).

\textbf{Key words:} Cyanobacteria; Flavodoxin; \textit{isiAB}; Oxidative stress; Photosystem 1; \textit{psaFJ}; \textit{Synechocystis} sp. PCC 6803
Abstract

A *psaFJ* mutant of *Synechocystis* sp. strain PCC 6803 was characterised. As opposed to similar mutants in chloroplasts of green algae, electron transfer from plastocyanin to photosystem I was not affected. Instead, a restraint in full chain photosynthetic electron transfer was correlated to malfunction of photosystem I at its stromal side. Our hypothesis is that absence of PsaF causes oxidative stress, which triggers the induction of the ‘iron stress inducible’ operon *isiAB*. Products are the IsiA chlorophyll-binding protein (CP43’) and the *isiB* gene product flavodoxin. Supporting evidence was obtained by similar *isiAB* induction in wild type cells artificially exposed to oxidative stress.

Abbreviations: Chl, chlorophyll *a*; Cyt *c*₆, cytochrome *c*₅₅₃; DCMU, 3-(3,4-dichloro)-1,1-dimethylurea; Fd, ferredoxin; Flv, flavodoxin; *isi*, iron stress inducible; knt, kilonucleotide; MV, methyl-viologen; PC, plastocyanin; PsaF and PsaJ, integral components of the PSI complex; PSI, photosystem I; PSII, photosystem II; WT, wild type.

Introduction

Cyanobacteria are photoautotrophic prokaryotes with oxygenic photosynthesis. Like in chloroplasts, linear photosynthetic electron transfer makes use of concerted action of photosystems II (PSII) and I (PSI). The photosynthetic apparatus is framed in thylakoids that are directly immersed in the cytoplasm (Chitnis, 1996; Golbeck, 1992).

The integral PSI subunit PsaF is a well-conserved transmembrane protein of which the N-terminal extremity is located in the thylakoid lumen and the C-terminus in the stroma (cytoplasm) (Golbeck, 1994). In chloroplasts of plants and algae, site-directed mutagenesis and functional studies (Chitnis *et al.*, 1991; Hippler, *et al.*, 1996; Fischer *et al.*, 1999; Haldrup, *et al.*, 2000) as well as cross-linking analyses (Hippler *et al.*, 1998) have supported the hypothesis that the luminal domain of PsaF contains the docking site for PC or its homologue Cyt *c*₆. Through this functional role the presence of PsaF is essential in eukaryotic organisms (Haldrup, *et al.*, 2000). However, in cyanobacteria the situation is different, PsaF is not needed for efficient reduction of P700⁺ neither in linear nor in cyclic electron transfer (Chitnis *et al.*, 1991; Xu *et al.*, 1994). This difference has been correlated with the presence (algae and plants) or absence (cyanobacteria) of a region close to the N-terminus, which contains amino acids involved in the binding site for the two soluble PSI donors PC and Cyt *c*₆ (Hippler *et al.*, 1996; Fischer *et al.*, 1999). Crystallisation data also indicate that the luminal extension of PsaF in cyanobacteria is quite distant from the docking site for PC near P700 (Jordan *et al.*, 2001).
The Synechocystis sp. PCC 6803 genome contains a single copy of the PsaF encoding gene (Kaneko et al., 1996). The transcriptional organisation of psaF is conserved in cyanobacteria, the gene being located upstream in a bi-cistronic operon with psaJ, encoding the PsaJ intrinsic sub-unit of PSI (Golbeck et al., 1994; Xu et al., 1994). PsaJ function would be to maintain PsaF in a proper orientation (Fischer et al., 1999; Xu et al., 1994). This study focuses on a mutant of Synechocystis sp. PCC 6803 carrying a deletion encompassing the psaFJ operon (Zuther et al., 1998). Evidence for functional implication of PsaF at the stromal, rather than at the lumenal side of the PSI complex, and connected de-repression of the bi-cistronic isiAB operon (Vinnemeier et al., 1998) will be presented.

Material and methods

Strains, mutant construction, culture conditions and estimation of growth rate. Synechocystis sp. strain PCC 6803 (WT) and the psaFJ mutant were grown photoautotrophically in modified Allen’s medium (‘standard medium’) under continuous illumination (50 μmol m⁻² s⁻¹) at 34°C (Jeanjean et al., 1993). High salt medium refers to the increase of the sodium-ion concentration from 50 mM (standard) to 550 mM (designated as high) by addition of NaCl. All cultures in high salt medium were inoculated from freshly grown pre-cultures in standard medium.

Construction of the psaF insertion mutant, psaFJ, was as described in (Zuther et al., 1998). Complete segregation of the mutant was checked by polymerase chain reaction (PCR). Kanamycin was added at 100-μg ml⁻¹ during growth of the psaFJ mutant. Estimation of growth by measuring turbidity and of Chl content as well as calculation of cell number were done as described (Jeanjean et al., 1993).

Photosynthetic measurements. Overall photosynthetic activity was determined as O₂ evolution in white light at 34°C. Neutral density filters were used to select a range of photon flux densities from 0 to 700 μmol m⁻² s⁻¹. Photochemical energy storage was measured in vivo using the photoacoustic technique (Havaux et al., 2003). The electron flux through PSI was monitored by kinetic spectroscopy at 820 nm (Schreiber et al., 1995) with a MKII P700⁺ kit (Hansatech Instrument Ltd, U.K.). The P700 content was determined as in (Jeanjean et al., 1993). Photosynthetic pigment content was determined by HPLC assisted separation (Havaux et al., 2003). Fluorescence emission spectra were recorded at 77K with a LS50-B Luminescence spectrometer (Perkin-Elmer). Excitation was at 440 nm (Havaux et al., 2003).

Estimation of mRNA abundance by Northern blotting and RT-PCR. Total RNA was obtained as in (Vinnemeier et al., 1998; Ardelean et al., 2002). Aliquots of 10 μg RNA were loaded onto a 1% agarose gel containing formaldehyde. Northern blotting onto nylon membrane filters was followed by hybridisation with a 32P-labeled DNA probe spanning the isiAB operon. The full-length transcript signal was detected by phospho-imaging (BAS1000, Fuji). Gel loading was checked by the hybridisation signal from radio-labelled 16S-rDNA probe applied to the same filters.
psaFJ\(^{-}\) mutant

(Vinnemeier et al., 1998). cDNA synthesis was carried out as in (Ardelean et al., 2002) with Superscript one-step RT-PCR from Gibco-BRL (Invitrogen). The following primers were used to amplify internal fragments of the coding sequences of the investigated genes by PCR (isiA gene: 5' primer - GCAAACCTATGGCAACGACACCG, 3' primer - CCGTTTGGGTGGTG CGTCGTA; isiB gene: 5' primer - AAGAATGGCCGGCGATAGTGGG, 3' primer - TCCCCATTTCACCCGCTTTTG; psaA gene: 5' primer - AGTCCACCCGAAAGAGAGGC, 3' primer - CCCGCCAGAGATTAAAACAGG; psbB gene: 5' primer – CCAGACCTTCAGCAATCCCGAGT, 3' primer - GTCACCAACCTTAGC A ACACACC).

SDS-PAGE and immuno-blotting. Aliquots of total protein extracts (5 µg) were separated in SDS-PAGE (Miniprotein, BioRad) with the Laemmli buffer system. Proteins were blotted semi-dry onto a nitrocellulose membrane (0.2 µm pore size, Schleicher and Schuell). Immuno-decorations were done with polyclonal antibodies raised against PC of *Anabaena* and Flv of *Synechocystis* sp. PCC 6803. Binding of the antibodies was monitored with a secondary antibody conjugated to horseradish peroxidase and visualisation with enhanced chemoluminescence detection (ECL-Kit, Amersham Buchler) (Hagemann et al., 1999).

Results and discussion

Growth and photosynthetic properties of the *Synechocystis* psaFJ\(^{-}\) mutant

Under standard conditions, global growth properties of WT and the *psaFJ\(^{-}\)* mutant (hereafter referred to as mutant) were the same, like in (Chitnis et al., 1991). However, transfer of exponential phase cells from standard to high salt medium revealed a difference. Observation of a longer adaptation period ('lag phase') for the mutant than for the WT (30 ± 5 h and 16 ± 3 h, respectively) essentially initiated this study.

The localisation of the PsaF and PsaJ proteins within the PSI complex prompted us to compare the photosynthetic performance of the mutant and the WT. At low light intensity an about 1.8 times lower oxygen evolution capacity was found for the mutant (Table 1). Higher light intensity during the measurement (Table 1) or culture in high salt medium (not shown) largely abolished this difference in oxygen evolution capacity. A further indication for less efficient light energy transduction in linear photosynthetic electron transfer in the mutant is the reduction of photochemical energy storage in blue light relative to WT (Table 1). Evidence that it concerned impaired PSI functionality followed from suppression of PSI in the mutant, can be seen from the P700 content estimate and the signal amplitude for maximally oxidised P700 in white light (Table 1). Accordingly, pigment analyses reflected a decrease of typical PSI carotenoids like β-carotene and stable values for the PSII related ones (Table 1).

The nature of the problem in the mutant is illustrated in P700 oxidation/reduction kinetics (Fig. 1A). Directly after switching on the white actinic light, P700 oxidation started, after which
Table 1. Comparison of photosynthetic parameters in cells of the WT and of the psaFJ mutant grown at standard conditions.

Standard errors of the mean values from at least three experiments have been indicated. Far-red actinic light was dosed at 35 μmol m⁻² s⁻¹. For energy storage in blue light 35-40 μmol m⁻² s⁻¹ was used. Saturating white light for determination of the maximal oxidation of P700 was dosed at 700 μmol m⁻² s⁻¹.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>WT</th>
<th>psaFJ mutant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen emission (μmol h⁻¹ mg⁻¹ Chl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White light 15 μmol m⁻² s⁻¹</td>
<td>13.4 ± 2.0</td>
<td>7.6 ± 1.0</td>
</tr>
<tr>
<td>White light 100 μmol m⁻² s⁻¹</td>
<td>81.0 ± 10.0</td>
<td>67.0 ± 10.0</td>
</tr>
<tr>
<td>Max. P700 oxidation in white light (%)</td>
<td>100</td>
<td>77 ± 8</td>
</tr>
<tr>
<td>Energy storage, blue light (%)</td>
<td>12.4 ± 0.6</td>
<td>8.2 ± 0.5</td>
</tr>
<tr>
<td>Energy storage, far-red light (%)</td>
<td>12.5 ± 0.8</td>
<td>12.3 ± 0.9</td>
</tr>
<tr>
<td>P700 centres content in thylakoids (nmol mg⁻¹ Chl)</td>
<td>5.5 ± 0.4</td>
<td>4.2 ± 0.2</td>
</tr>
<tr>
<td>Pigments (μg 10⁶ cells)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyll</td>
<td>14.3 ± 0.6</td>
<td>12.3 ± 0.6</td>
</tr>
<tr>
<td>Myxoxanthophyll</td>
<td>0.45 ± 0.06</td>
<td>0.48 ± 0.06</td>
</tr>
<tr>
<td>Zeaxanthin</td>
<td>0.55 ± 0.06</td>
<td>0.55 ± 0.03</td>
</tr>
<tr>
<td>Echinenone</td>
<td>1.06 ± 0.06</td>
<td>0.68 ± 0.06</td>
</tr>
<tr>
<td>β-carotene</td>
<td>1.52 ± 0.19</td>
<td>1.10 ± 1.29</td>
</tr>
</tbody>
</table>

A rapid transient reduction was observed within about 200 ms, in particular in the mutant. Next to the transient, the subsequent approach to full oxidation was slower and led to a less oxidised state in the mutant than in the WT. The strong intermediate transient in the mutant may find its cause in electron flux from PSII, which is also activated in the white light used. Evidence for such a PSII-related origin for the transient follows from its full suppression by 3-(3,4-dichloro)-1,1-dimethylurea (DCMU) (Fig. 1B). The difference between WT and mutant likely demonstrates the consequence of impaired electron flux from the stromal acceptor site of PSI to the PQ-cytochrome b₆f complex (‘cyclic route’) in the mutant. Electron influx from the stroma to the complex regulates PSI function (Schreiber et al., 1995). Altered electron passage from the stroma may install a new redox equilibrium for the complex in culture conditions, which has been advocated as a plausible transcription controlling factor in biosynthesis, in addition to oxygen ion compounds (Pfannschmidt et al., 2001). High salt grown cyanobacterial cells are known to induce more effective and new electron flow pathways in PSI ‘cyclic’ (Jeanjean et al., 1993; Hagemann et al., 1999; Jeanjean et al., 1998). This induction likely changes the redox state of the PQ-cytochrome b₆f complex and suppresses the transient in P700 kinetics in the mutant (Fig. 1C). At the same time, control of electron efflux from PSII also diminished oxidative stress directly.
Content of soluble electron carriers involved in electron transfer to and from PSI

The PC content in the mutant was slightly lower than in the WT corresponding to the reduced level of PSI (Fig. 2A, top). Surprisingly, a significant amount of the soluble electron acceptor Flv accumulated in the mutant already in standard medium. Another instance in which transcription of the isiB gene for Flv occurs, iron limitation in the medium, was ruled out from the total absence of Flv in the WT control (Fig. 2A, middle). Flv induction has been related to functional replacement of ferredoxin (Fd) in iron limitation stress (Sandmann et al., 1990) and to increased capacity for PSI driven cyclic electron flow in salt-adapted Synechocystis sp. PCC 6803 (Hagemann et al., 1999). High salt gave rise to accumulation of Flv in the WT in agreement with (Hagemann et al., 1999) and additional synthesis in the mutant. The permanent expression of Flv under iron-replete conditions in the psaFJ mutant of the cyanobacterium Synechocystis sp. PCC 6803 is accordingly proposed to be the result of adaptation to stress that is experienced at the stromal side of the thylakoid membrane. Concerted transcription of the isiA gene, which is organised with the Flv encoding isiB gene in an operon (Vinnemeier et al., 1998), became evident in Northern blot analysis (Fig. 2A, lower frame). Additionally, RT-PCR was used to study the transcript status for psbB (PSII), isiA and psaA (PSI) in WT and mutant (Fig. 2B). It indicates, in agreement with data presented above, that the PSII transcript level remains constant, that the

Figure 1. Kinetic traces of P700 oxidation-reduction in WT and psaFJ mutant cells, respectively, grown in standard medium for traces A and B or in high salt medium for trace C. White photon flux density was 300 μmol m⁻² s⁻¹ in all cases. Heavy lines are for the psaFJ mutant, normal lines for the WT. Open arrows indicate light on, filled arrows indicate light off. A: control cells; B: control cells plus 10 μM DCMU; C: salt-adapted cells.
isiAB operon is constitutively transcribed in the mutant and that PSI transcripts like psaA are less abundant. Presence of the chlorophyll a (Chl)-binding protein IsiA in the mutant was also suggested from the blue shift in the 77K fluorescence emission spectrum, and from the increased emission around 690 nm (Fig. 3), which arises from emission of PSII and probably IsiA. For isolated IsiA an emission at 682 nm has been shown (Andrizhiyevskaya et al., 2002), while overexpression of isiA in Synechococcus sp. PCC 7942 led to increased emission at 685 nm absent in a corresponding mutant (Sandström et al., 2001).

A typical stress that can arise from a decrease in electron flux from the stroma to PQ and may trigger induction of the isiAB operon is oxidative stress. Strong evidence for its role in isiAB induction was acquired by application of artificial oxidative stress through addition of 100 μM methyl viologen (MV) to a culture of WT cells in the light. Induced transcription of the isiAB operon was shown by RT-PCR (Fig. 4). This observation demonstrated that the induction of isiAB expression likely occurred by oxidative stress as a secondary consequence of stresses like iron limitation and high salt or by absence of PsaF/J subunits.

In the mutant the binding pocket for Fd may lack the mechanical support of the little hook that extends from the C-terminal end of the PsaF protein in the PSI crystal structure (Jordan et al., 2001). This altered geometry of the binding pocket may cause a less close positioning of Fd and its catalytic partners (PsaC, PsaD, PsaE) for electron acceptance from PSI in the mutant. Hence, oxidative stress may follow from oxygen acting as acceptor for the very reduced FeS proteins at the ‘top’ of PSI. The trigger for induction of the isiAB

Figure 2. A: Presence of the soluble electron donor plastocyanin (PC) and ibid acceptor flavodoxin (Flv) shown by Western-blot experiments; Northern-blot experiments for the presence of the chlorophyll-binding protein isiA transcript. B: RT-PCR detection of the transcripts of isiA, the PSII core protein psbB and the PSI core protein psaA. Total protein or RNA were isolated from cells of the psaFJ mutant (MU) and WT grown under standard conditions (panel A: salt -; all lanes in panel B) or in high salt medium (panel A: salt +). Molecular mass standards are indicated left of the gels.
Figure 3. Chlorophyll fluorescence emission spectra recorded at 77K from cells of the WT (thin line) or the psaFJ mutant (MU, thick line). Excitation of Chl a was at 440 nm. Both spectra were normalised to 100% of the emission at 700 nm.

Figure 4. Transcription of the isiAB operon in cells of the WT exposed to artificially created oxidative stress conditions. The latter was realised through incubation of cells with the PSI electron acceptor MV (0.1 mM final concentration) in white light (60 μmol m⁻² s⁻¹). This brings about reduction of MV by light-dependent electron transfer via PSI. Reduced MV generates hydrogen peroxide by reduction of molecular oxygen. After this treatment, RNA was isolated at the times indicated and the isiA, psaA and isiB transcript levels were detected by RT-PCR.

genome should accordingly be defined broader, we propose that oxidative stress rather than iron limitation is actor. For the cyanobacterium *Synechococcus* a better salt tolerance was observed in a catalase overproducing strain (Kaku et al., 2002). Catalase is instrumental in breakdown of hydrogen peroxide. In *Escherichia coli* expression of *fldA* encoding Flv is regulated by two transcription factors, *Fur* for iron limitation and *SoxS* for oxidative stress (Zheng et al., 1999). The operon structure of *isiAB* in *Synechocystis* confers besides isiB expression also that of isiA (Vinnemeier et al., 1998). The benefit of increased amount of IsiA, a chlorophyll-binding protein, which has currently attracted much attention after its structural characterisation (Bibby et al., 2001; Boekema et al., 2001), for stressed cyanobacterial cells remains to be defined (Andrizhiyevskaya et al., 2002; Sandström et al., 2001). Our finding that this protein is induced by oxidative stress suggests a role in photoprotection.

Acknowledgements

We thank Prof. Françoise Joset (Marseille) for stimulating discussions. This work was supported in Germany by the Deutsche Forschungsgemeinschaft, in France by the CNRS,
the Ministère de l’Éducation Nationale and the Université de la Méditerranée and in the Netherlands by the Netherlands Organization for Scientific Research (NWO).

References

Hippler, M., Drepper, F., Haehnel, W., and Rochaix J. D. (1998) The N-terminal domain of PsaF: precise recognition site for binding and fast electron transfer from cytochrome c6 and plastocyanin to

