Coagulation and inflammation in diabetes mellitus
Sommeijer, D.W.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Chapter 10

Analysis of blood coagulation in mice: pre-analytical conditions and evaluation of a home-made assay for thrombin-antithrombin complexes

Dirkje W. Sommeijer¹, René van Oerle³, Pieter H. Reitsma¹, Janneke J. Timmerman¹, Joost C.M. Meijers², Henri M.H. Spronk³ and Hugo ten Cate³, *

¹Laboratory for Experimental Internal Medicine, ²Department of Vascular Medicine, Academic Medical Centre of Amsterdam, Amsterdam, The Netherlands, ³Laboratory for Clinical Thrombosis and Haemostasis, Department of Internal Medicine and Cardiovascular Research Institute Maastricht, University of Maastricht, The Netherlands

Janneke Timmerman is currently working at Senter, The Hague
Abstract

Background: The use of mouse models for the study of thrombotic disorders has gained increasing importance. Methods for measurement of coagulation activation in mice are, however, lacking. The aim of this study was to improve methods for mouse plasma preparation and to develop a specific mouse thrombin-antithrombin (TAT) enzyme-linked immunosorbent assay (ELISA) for measurement of coagulation activation.

Methods and results: First, to prevent clotting of mouse blood sodium citrate was either mixed with blood during collection in a syringe or was injected intravenously immediately prior to blood collection. Intravenous sodium citrate inhibited blood coagulation completely resulting in plasma with consistently low TAT levels. Sodium citrate mixed with blood during collection resulted in increased TAT levels in 4 out of 16 plasma samples. Second, heparinase was added to plasma samples after in vivo injection of different heparin doses to test its neutralizing effect. Heparinase neutralized up to a 20 U/mouse dose of heparin and resulted in accurate APTT and factor VIII activity determinations. Third, for the measurement of TAT-complexes in plasma a mouse specific TAT-ELISA was developed using rabbit polyclonal antibodies raised against mouse thrombin and rat antithrombin, respectively. This ELISA detected an increase in TAT levels in a mouse model of endotoxemia. Two commercial human TAT ELISAs appeared to be less specific for mouse thrombin-rat antithrombin complexes.

Conclusion: These improved procedures and reagents for plasma preparation and coagulation testing will facilitate studies on thrombotic disorders in mice.
Introduction

Since the identification of genes encoding mouse clotting proteins and the creation of a growing number of transgenic mice, the use of mouse models for the study of thrombotic disorders has gained increasing interest (1). While methodology for determining fibrin deposition in tissues (2) and quantification of thrombus formation (2; 3) is readily available, optimal utilization of blood samples from mice remains a poorly explored area. Traditionally, research on blood coagulation depends on determination of the activity of coagulation enzymes in a plasma sample. For this purpose specific anticoagulants, including sodium citrate or cocktails of substances need to be added to blood samples, in order to prevent ex vivo clotting. While even in humans the collection of proper plasma samples is not without practical problems, the collection of plasma from mice is a major technical challenge. As far as we know, there have no anticoagulant procedures been described that specifically address plasma sampling in mouse. The use of mouse models enables investigations into the mechanism of coagulation activation in plasma as well as its consequences, i.e. fibrin deposition and pathological changes in organs, simultaneously. However, for proper tissue collection frequently procedures such as heparinization are required, which does not allow tests of plasmatic coagulation. Human studies showed that addition of heparinase to plasma samples was able to neutralize up to 2 U/ml heparin resulting in accurate factor VIII activity determination (4). So far it is not known whether heparinase would also neutralize heparin contamination in mouse plasma.

To study coagulation activation in mouse models requires the availability of tools for the analysis of coagulation activity, comparable to the situation in humans. There is, however, a striking lack of analytical methods to test coagulation activation specifically in mice. For human studies, several commercial assays are available, including assays for thrombin-antithrombin (TAT) complexes to test in vivo coagulation activation (5; 6). When these assays, based on antibody detection of human protein epitopes, are applied on mouse plasma, it is likely that difficulties can arise depending on the degree of interspecies cross-reactivity, sensitivity, and specificity.

In this study we set out to improve prevention of clotting during blood sampling by different techniques. In addition, we developed a new mouse specific TAT enzyme-linked immunosorbent assay (ELISA) to improve methods for measurement
of coagulation activation and enzyme linked immunosorbent assay validated this method using a mouse model of endotoxemia, characterized by enhanced coagulation activation. Furthermore, we have compared this new ELISA with two commercially available human immunoassays for measuring TAT complexes.

Mice, Materials and Methods

Chemicals
All reagents were of analytical grade or better and were from commercial suppliers.

Animals
All studies were performed in male mice of the C57Bl/6 strain (University of Maastricht or Academic Medical Center, Amsterdam), which were 8 weeks old and weighing approximately 20 grams at the start of the experiments. The animals were housed in normal cages in an environment with a 12 hour light-dark cycle, controlled temperature (20 ± 2 °C) and humidity (50 ± 10%). Animals had free access to water and diets (Hope Farms, Woerden, The Netherlands). Endotoxemia studies were performed by i.p. injection of 2 mg lipopolysaccharide (LPS, E. coli, Sigma, St.Louis, MO) per kg. The Experimental Animal Ethics Committee of the University of Maastricht and of the Academic Medical Center, Amsterdam approved all experimental protocols.

Plasma collection procedures

Anti-coagulation with sodium citrate
Two methods of anticoagulation with sodium citrate were compared. In the first procedure, 900 µl blood was drawn from the vena cava into a syringe containing 100 ml 3.2% (w/v) sodium citrate. For the second approach 180 ml 3.2% (w/v) sodium citrate was i.v. administrated in the vena cava 20-30 seconds prior to blood drawing into a syringe. Blood samples were centrifuged for 15 minutes at 3000 rpm at RT, subsequently plasma was centrifuged for 5 minutes at 13 000 rpm to remove remaining cells and platelets, and immediately frozen at -80 °C.

Neutralizing heparin in plasma
To test whether in vivo injected heparin could be neutralized in collected plasma, mice were anticoagulated by intravenous injection of 0, 4, 20 or 400 units heparin
(Leo Pharmaceuticals, Weesp, The Netherlands), diluted in approximate 200 ml water for injection. After 5 minutes blood samples of approximately 700 ml were obtained by exsanguination via the vena cava into a syringe containing 0.1 volume 3.2% (w/v) sodium citrate. The plasma samples were centrifuged for 10 minutes at 3000 rpm and immediately frozen at -80°C until use. After thawing, a quarter of a heparinase tablet (Dade Hepzyme, Dade Behring, Marburg, Germany) was added to 150 ml of plasma sample in a plastic tube, mixed gently and stabilized at room temperature for 15 minutes. Then, activated partial thromboplastin time (APTT) and factor VIII activity were measured with standard procedures with a Behring Coagulation System (BCS, Dade Behring) using human reagents as provided by the manufacturer. For factor VIII activity measurements human FVIII deficient plasma (Dade Behring) was used.

Development of a mouse TAT-ELISA

Rabbit immunization

Mouse thrombin (Sigma, St.Louis, MO, USA) and rat antithrombin (AT) (Sigma) were dissolved in PBS (150 mmol/L NaCl, 10 mmol/L sodium phosphate, pH 7.4), to a concentration of 200 and 140 µg/ml, respectively. Fifteen-week old New Zealand White rabbits, weighing approximately 3 kilograms were obtained from Harlan (Cambridge, UK). Immediately before immunization with thrombin and AT, pre-immune sera were drawn. Thereafter, each rabbit was immunized with a mixture of 500 µl Freund’s Complete Adjuvant (Difco, Detroit, MI, USA) and 500 µl protein solution. For each protein, two rabbits were injected twice s.c. on the back and twice i.m. in the hind legs. The rabbits were boosted at nine and 15 weeks after the first immunization with thrombin and AT in combination with Freund’s Incomplete Adjuvant (Difco). During the first three months test samples of approximately five ml blood were obtained regularly and thereafter samples of approximately 50 ml were obtained monthly from each rabbit.

Reactivity of rabbit antisera for TAT ELISA

MaxiSorp plates (Nunc A/S, Roskilde, Denmark) were coated overnight at 4 °C with 100 µl thrombin or AT in a concentration of 5 µg/ml diluted in coating buffer (70 mM Na₂CO₃, 30 mM NaHCO₃, pH 9). Subsequently, the plates were washed three times with PBS, 0.05 % (v/v) Tween (PBS/Tween) and incubated with 100 µl rabbit sera diluted in PBS, 0.05 % (v/v) Tween, 1 % (w/v) FCS (PBS/Tween/FCS). The
plates were incubated for 1 hour at room temperature and washed three times with PBS/Tween. Thereafter, the plates were incubated for 1 hour with 100 µl horseradish peroxidase (HRP)-conjugated swine anti-rabbit antibodies (DAKO A/S, Glostrup, Denmark) diluted 250-times in PBS/Tween/FCS. The plates were washed three times with PBS/Tween and developed with o-phenylenediamine (OPD, Sigma) for 30 minutes. The reaction was stopped with 100 µl 1 M H₂SO₄ and the optical density (OD) was determined at 490 and 650 nm. Calculations were performed using the SOFTmax software from Molecular Devices Corporation (Sunnyvale, CA, USA).

Purification of rabbit antibodies and conjugation to digoxigenin (DIG) for TAT ELISA
Three ml rabbit serum, 1/10 diluted with 200 mM sodium phosphate pH 7, was applied on a HiTrap Protein A column (Pharmacia LKB, Uppsala, Sweden). Before application of the sample the column was equilibrated with five column volumes 20 mM sodium phosphate, pH 7. After application of the sample the column was washed with 5 volumes 20 mM sodium phosphate and the rabbit IgG was eluted with 100 mM citric acid, pH 5. The pH of the IgG-elution sample was adjusted with 1 M Tris-HCl to pH 7 and dialyzed overnight at 4 °C against PBS. The concentration of the purified IgG samples was adjusted to 1 mg/ml. One ml sample was incubated in a glass tube at RT under continuously shaking with 47 µl DIG-NHS ester (5 mg/ml, Roche Diagnostics). The samples were dialyzed overnight against PBS and frozen in aliquots at -20 °C.

In vitro generation of TAT-complexes
TAT-complexes were generated in vitro according to the method from Boisclair et al. (8). Briefly, 50 mg mouse thrombin and 140 mg rat antithrombin were dissolved in 330 ml TAT-buffer (50 mM Tris, 175 mM NaCl, 0.02% sodium azide, 0.1% PEG-6000, 4% BSA, pH 7.9) and incubated for 45 minutes at 37°C. The samples were aliquoted in 20 ml portions and frozen at -20°C.

Western blot analysis
Western blot samples were prepared as follows: 5 µl 5x sample buffer (250 mM Tris-HCl pH 6.8, 10% SDS, 50% Glycerol) was added to 20 µl thrombin (50 mg/ml), 20 µl AT (50 mg/ml) or 20 µl in vitro TAT-complexes. The samples were prepared
without addition of β-mercaptoethanol and were not denatured by heating because this results in aggregation of the in vitro TAT complexes in the PEG-6000 containing buffer. Plasma samples were prepared by combining 20 μl plasma, 20 μl 5x sample buffer and 60 μl H₂O. Ten μl of each sample was separated on a 7.5% acrylamide gel and transferred by electroblotting to a nitrocellulose filter (Schleicher and Schuell, Dassel, Germany). After washing for 5 minutes with PBS/1%Tween and blocking for 1 hour at RT in PBS/Tween/5%Milk the filters were incubated with 1/1000 diluted rabbit serum in PBS/Tween. After three washes of 10 minutes with PBS/Tween the blots were incubated for 1 hour at RT with HRP-conjugated swine anti-rabbit IgG diluted in PBS/Tween. Finally, the blots were washed with PBS/Tween and H₂O and incubated with a chemoluminescent substrate (LumiLight, Roche Diagnostics, Mannheim, Germany). The pre-stained low range SDS PAGE markers (Bio-Rad Laboratories, Hercules, CA, USA) were used as molecular weight marker.

Sandwich TAT-complex ELISA
TAT-levels in plasma were detected with the new mouse TAT ELISA as follows: MaxiSorp plates were coated overnight at 4 °C with 100 μl purified anti-thrombin antibodies in a concentration of 1 μg/ml in coating buffer. Subsequently, the plates were washed three times with PBS/Tween and incubated with 50 μl standard or plasma samples diluted in PBS/Tween/FCS for 1 hour on a shaker at room temperature. The plates were washed three times with PBS/Tween and incubated with 100 μl purified DIG-conjugated anti-AT antibodies in a concentration of 0.5 μg/ml for 1 hour at room temperature. The plates were washed three times with PBS/Tween and incubated for 1 hour at room temperature with 100 μl HRP-conjugated sheep F(ab)2 anti-DIG fragments (Roche Diagnostics) diluted in PBS/Tween. The plates were developed with OPD for 30 minutes and after termination of the reaction with 1 M H₂SO₄. The OD was determined at 490 and 650 nm. A standard for the mouse TAT ELISA was constructed with two-fold serial dilutions of mouse thrombin – rat antithrombin complexes (Sigma) in PBS/Tween/FCS buffer or mouse plasma.

Detection of TAT-complexes with three different ELISAs
The new developed TAT-ELISA was compared with two commercially available ELISAs according to the manufacturer's instructions: Enzygnost® TAT micro (DadeBehring BV, Leusden, The Netherlands) and TAT ELISA (Enzyme Research
Laboratories (ERL), South Bend, IN, USA). For this purpose, *in vitro* TAT complexes were used as standard and diluted in either buffer or normal mouse pool plasma. In addition, TAT-levels measured in plasma from control and LPS-treated (2 mg/kg i.p., 6 hours) mice, were compared.

Statistical analysis

Data are presented as means with SEM. Differences between two groups were tested with students' t test. Differences between three groups were tested by one way ANOVA. P < 0.05 was set as threshold of statistical significance. All computations were performed using SPPS 11.0.

Results

Plasma collection procedures

Anticoagulation with sodium citrate

Two different techniques of anticoagulation with sodium citrate were tested in mice. Collection of venous blood from the vena cava in a syringe with 0.1 volume sodium citrate resulted in activation of blood coagulation in four out of sixteen plasma samples, as indicated by high TAT-levels of > 100 ng/ml (Figure 1). Plasma samples obtained by i.v. injection of sodium citrate (180 ml per mouse) via the vena cava showed little or no activation of blood coagulation, since fourteen samples had undetectable TAT-levels of 0 ng/ml and two with levels of 2 and 13 ng/ml (Figure 1).

![Figure 1](image-url)

Figure 1. Mean TAT-complex levels in mouse plasma after two different blood drawing techniques. Plasma samples were obtained by either collection of venous blood in a syringe filled with 180 µl 3.2 % (w/v) citrate (Citrate in Syringe) or by i.v. injection of 180 µl 3.2 % (w/v) citrate into the vena cave 20-30 seconds before blood drawing (Citrate in Vein).
Neutralizing heparine in plasma samples
To assess the influence of contamination of in vivo injected heparin and its neutralization with heparinase, APTT and factor VIII activity were measured. Intravenous injection of 4, 20 and 400 units of heparin prolonged APTT similarly in mouse plasma by 300 seconds. Subsequent addition of heparinase to plasma samples shortened the APTT significantly in plasma of mice treated with 4 and 20 units of heparin (p < 0.0001) (Figure 2A). The APTT was the same (p = 0.6, tested by ANOVA) for plasma from mice treated with 4 or 20 units of heparin followed by heparinase neutralization compared to control plasma. The APTT of plasma pretreated with 400 U of heparin also shortened after heparinase addition, though it remained prolonged (169 seconds ± 47) compared to control plasma (29 seconds ± 1). Factor VIII activity was also normalized to normal levels after treatment with heparinase in plasma from mice treated with 4 or 20 units of heparin (p=0.6, tested by ANOVA) (Figure 2B). The level of factor VIII activity in plasma with 400 units of heparin increased after heparinase addition (51 ± 5%) but not to the level of control plasma (125±18%).

![Figure 2](image)

Figure 2. Neutralizing effect of heparinase on different amounts of heparin was tested. A) APTT returned to normal levels after heparinase addition to plasma samples from mouse treated with 4 and 20 units of heparin per mouse. B) Also, factor VIII activity returned to normal levels after heparinase treatment to plasma samples from mouse treated with 4 and 20 units of heparin.

Development of a mouse TAT-ELISA
Generation of rabbit antibodies against mouse thrombin and rat antithrombin
Rabbits were immunized with mouse thrombin or with rat antithrombin (AT). Before immunization neither of the rabbits exhibited immune reactivity towards thrombin or AT (data not shown). Twenty-five days after immunization the rabbits exhibited a response against the immunizing protein, which reached maximal
levels 50 days after immunization. Serum immune titers of each rabbit were determined by ELISA. Serum samples of rabbits immunized with thrombin could be diluted more than 25,000-fold before the reactivity with thrombin reached background level (Figure 3A). Serum samples of rabbits immunized with AT could even be diluted 100,000-fold before reaching background signal (Figure 3B). Since antibodies from two rabbits recognized thrombin or antithrombin equally well, sera from each pair of animals were pooled and used for further experiments.

![Graphs showing dilution (1/x) vs. OD for thrombin and antithrombin recognition](image)

Figure 3. Recognition of thrombin (Panel A) and anti-thrombin (Panel B) by post-immune sera of rabbits immunized with either mouse thrombin (○: 085 and ▽: 088) or with rat antithrombin (○: 086 and ▽: 087). Points represent means of triplicates ± SD.

Western blot analysis showed that serum from rabbits immunized with thrombin, reacted only with thrombin (lane T) and not with antithrombin (lane AT) (Figure 4A). In the lane loaded with *in vitro* TAT complexes, two bands were observed of respectively 39 kD and 94 kD. The 39 kD band represents thrombin, whereas the 94 kD corresponds to the reported molecular weight of TAT complexes (7). Besides prothrombin (72 kD), TAT-complexes were detected in plasma samples from LPS-treated mice (Figure 4A, lanes 2 through 4), indicating proper recognition of TAT-complexes in mouse plasma by the rabbit α-thrombin antibodies.

With serum obtained from rabbits immunized with mouse AT, opposite results were obtained. No band was detectable in the lane loaded with thrombin while a 58 kD band was detectable in the lane loaded with AT (Figure 4B). The two upper bands, also detected in the plasma samples, are multimeric complexes of AT. Again, two bands were detected in the TAT-lane: one band of 58 kD, representing...
uncomplexed AT, and a 94 kD TAT complex band. Western-blot analysis of plasmas obtained from LPS-treated mice showed the presence of TAT-complexes recognized by the rabbit α-AT antibodies (Figure 4B, lanes 2 through 4).

Development of TAT-complex sandwich ELISA

To discriminate and select between capture and conjugating antibody, protein-A purified rabbit α-thrombin antibodies and rabbit α-AT antibodies were conjugated to digoxigenin (DIG). In brief, on 96-wells plates coated with thrombin or AT it was confirmed that DIG was successfully conjugated to both antibodies (data not shown). Subsequently, 96-wells plates were coated with either rabbit α-thrombin antibodies or rabbit α-AT antibodies in a concentration of 1 µg/ml. Thereafter, the plates were incubated with two-fold serial dilutions of in vitro TAT-complexes. Plates coated with rabbit α-AT antibodies were subsequently incubated with serial dilutions of DIG-conjugated rabbit α-thrombin antibodies, whereas plates coated with rabbit α-thrombin antibodies were incubated with serial dilutions of DIG-conjugated rabbit α-AT antibodies.

Only the combination of rabbit α-thrombin antibodies as capture antibody and DIG-conjugated rabbit α-AT antibodies as detection antibody showed pronounced detection of TAT-complexes, even at low concentration of secondary antibody (Figure 5A). Furthermore, the background signal was virtually zero in the absence of TAT-complexes and a 2000-fold dilution of DIG-conjugated rabbit α-AT antibodies. Detection of TAT-complexes using the combination of rabbit α-
Figure 5. Selection of capture and conjugating antibody. 96-well plates were coated with either rabbit anti-mouse thrombin antibodies (Panel A) or rabbit anti-rat antithrombin antibodies (Panel B) prior to incubation with two-fold serial dilutions of in vitro TAT-complexes. Plates coated with rabbit α-AT antibodies were subsequently incubated with serial dilutions of DIG-conjugated rabbit α-thrombin antibodies, whereas plates coated with rabbit α-thrombin antibodies were incubated with serial dilutions of DIG-conjugated rabbit α-AT antibodies.

AT? antibodies as capture antibody and DIG-conjugated rabbit α-thrombin antibodies as detection antibody showed lower specificity compared to the reverse setup (Figure 5B). Therefore, for further experiments the rabbit α-thrombin antibodies and DIG-conjugated rabbit α-AT antibodies were used as capture antibody and detection antibody, respectively.

To eliminate the possibility that positive results were caused by cross reactivity of rabbit α-thrombin antibodies with AT or vice versa, plates coated with rabbit α-thrombin antibodies were incubated with serial dilutions of thrombin alone and thereafter incubated with DIG-conjugated rabbit α-AT antibodies. Neither thrombin nor AT alone were detected in this analysis (data not shown) in vitro TAT-complexes were generated in order to be used as standard. The linearity of standard diluted in buffer was similar to the linearity upon dilution in mouse plasma or pooled human pool plasma (data not shown). While lower OD’s were detected for standard diluted in human plasma as compared to buffer, the slopes of the linear part of the curves of standard diluted in human plasma (slope=0.45, r²=0.996) or buffer (slope=0.43, r²=0.998) were similar.

Using frozen aliquots of in-vitro TAT-complexes as standard curve, the intra- and inter-assay coefficients of variation (CV) of the ELISA were determined. The intra-assay CV were assessed by measuring TAT values in three samples each from
different aliquots (n=5) on one plate. The mean TAT concentration in the three samples was 5.1, 11.3 and 15.4 ng/ml and the corresponding CV were 7.7, 6.6 and 5.5%. The three samples with different TAT levels were also analyzed on five separate ELISA plates and the inter-assay CV were 7.0, 5.1 and 4.7%, respectively. To study the kinetics of TAT levels in plasma samples of endotoxin-treated mice and to evaluate the TAT ELISA, plasma samples were obtained at various time points after i.p. LPS administration. In plasma of control mice the TAT concentration was 1.6 ± 0.4 ng/ml (Figure 6). A 10-fold increase in TAT values up to 20.9 ± 2.0 ng/ml was observed in plasma samples obtained 4 hours after LPS administration. After 24 hours the TAT levels were back at baseline levels. The TAT levels on t=0.5, t=1.5 and t=4 hours differed significantly from control levels (p<0.05, unpaired Student’ t-test).

Figure 6. Increased TAT-complex levels in plasma of LPS-treated mice. Plasma samples were collected at 0, 0.5, 1.5, 4, 12, and 24 hours after i.p. injection of 2 mg/kg LPS. Values are means of triplicates ± SD. *; p < 0.05, and **; p < 0.0001.

Comparision of three TAT ELISAs
Detection of TAT-levels in standard prepared from in vitro TAT-complexes was compared between three ELISA methods: 1. the mouse specific TAT ELISA as described in Materials and Methods, 2. the human specific Enzygnost® TAT micro from Dade Behring, and 3. the human specific TAT ELISA from ERL. Using the human specific TAT ELISA from ERL, a standard curve comparable to the mouse specific TAT ELISA was obtained by serial dilution of standard in buffer (Figure 7A). In contrast to the mouse specific ELISA, both commercial kits failed in detecting in vitro prepared TAT-complexes after serial dilutions in mouse plasma (Figure 7B). For comparison of in vivo formed TAT complexes in mouse plasma by the three different ELISA methods, the standards supplied in each commercial assay were diluted according to the manufactures instructions and used to calculate TAT-
Figure 7. Comparison of three TAT ELISAs using in vitro TAT-complexes diluted in buffer (Panel A) or normal mouse pool plasma (Panel B). In vitro TAT-complexes were generated according to the method from Boisclair et al. (8). TAT-levels in serial dilutions of standards were measured by the mouse specific TAT ELISA (□), the human specific TAT ELISA from Enzyme Research Laboratories (∆), and the human specific Enzygnost® TAT micro from Dade Behring (○).

concentrations. Plasma samples were obtained from control mice and from mice six hours after i.p. LPS administration (2 mg/kg) by drawing venous blood after i.v. administration of sodium citrate as described before. In plasma of control mice TAT concentration was 2.9 ± 2.9 ng/ml, 9.2 ± 7.7 ng/ml, and 1.1 ± 0.20 ng/ml, measured with respectively the Dade Behring, ERL, and our own ELISA's (Figure 8). After 6 hours of endotoxemia blood coagulation was activated as indicated by a 30-fold increase in TAT-levels as measured with the mouse specific TAT ELISA (35.7 ± 21.1 ng/ml; p < 0.05 as compared to control plasma) (Figure 8), whereas TAT levels measured by the ERL and Dade Behring ELISAs were 2588.5 ± 1234.0 ng/ml and 37.4 ± 32.4 ng/ml, respectively. A weak correlation, as measured with Spearman correlation test, between the mouse specific TAT ELISA and the human specific ELISA from ERL was found: r = 0.600; p = 0.051. No correlation was found between TAT-concentration measured with the mouse specific ELISA and the Dade Behring ELISA. A correlation was found between the two commercial human specific ELISAs (r = 0.694; p < 0.05).
Discussion

Studying the relationship between coagulation changes in blood and at tissue level in mice requires the availability of tools for the analysis of coagulation activation. In this study we evaluated several procedures for plasma preparation and the measurement of coagulation activation in a mouse model of endotoxemia. First, we have tested different anticoagulation techniques with sodium citrate and heparin. Second, we described the development of a specific mouse sandwich ELISA to measure the level of TAT complexes in mouse plasma. And third, we have compared three different sandwich ELISAs for measurement of TAT levels in mouse plasma.

Sodium citrate is the most commonly used anticoagulant that allows coagulation assays in human plasma. Since we experienced that anticoagulation with sodium citrate or EDTA in the syringe does not always effectively prevent ex vivo clotting of mouse blood, an alternative method of anticoagulation was sought. This led to a novel method to anticoagulate the blood samples in which sodium citrate was injected intravenously into the vena cava 20-30 seconds before blood collection by exsanguination. In our experiments, TAT levels were not increased in any of the plasma samples obtained using the i.v. injection of sodium citrate method, in contrast to the standard method in which sodium citrate was added to blood in the syringe. Therefore, we conclude that anticoagulation of mouse blood by i.v. injection of sodium citrate into the circulation results in more reliable TAT data and in plasma more suitable for further analysis of coagulation and related factors.
From human studies it is known that heparin can be neutralized with heparinase for the measurement of factor VIII activity (4). In this study we showed that up to 20 units of heparin per mouse, prolonging the APTT to more than 300 seconds, could be adequately neutralized by the addition of heparinase to the plasma sample as indicated by normalized FVIII activity and APTT levels. Thus, similar to human plasma, heparin contamination can be neutralized in mouse plasma. Therefore, even if heparin is used in a mouse model, plasmatic coagulation activity can be measured using heparinase to neutralize heparin. This implies that plasma and tissue from the same animal can be more efficiently used for combined coagulation measurements and histological examination.

Using the new TAT ELISA it was possible to detect changes in mouse plasma TAT content 4 hours after endotoxin infusion. Previously, it was demonstrated that endotoxin treatment of mice resulted in increased TAT complexes (8), TF mRNA synthesis (9) and enhanced tissue deposition of fibrin (10). In human volunteers endotoxin infusion induced monocyte TF mRNA expression and plasma F1+2 and TAT levels (11). Therefore, we expected an increase of TAT levels in plasma of mice treated with endotoxin. Indeed, basal TAT levels of 1.6 ± 0.4 ng/ml were increased in mice treated with endotoxin with maximal levels of 20.1 ± 9.9 ng/ml after 4 hours.

In addition to the mouse specific TAT ELISA, the two commercially available human TAT ELISAs, Enzygnost® TAT micro from Dade Behring and the TAT ELISA from Enzyme Research Laboratories detected increases in TAT levels after endotoxin treatment in mice. However, significant differences between the three assays were observed. The levels of TAT complexes as measured with the ERL assay were about 70 fold higher as compared to the two other assays. Furthermore, the Dade Behring assay could not detect in vitro prepared TAT complexes diluted in either buffer or plasma and in vivo TAT levels did not correlate to the levels measured with the mouse specific ELISA. Since plasma levels of TAT complexes measured by the ERL ELISA correlated to levels measured with the mouse specific ELISA, we speculate that this assay has probably a higher specificity for mouse TAT complexes than the Dade Behring assay. In addition, the ERL ELISA could measure in vitro prepared TAT complexes diluted in buffer. However, given the considerable costs of the commercial human assays our novel assay provides a more sensitive and cheaper alternative for the analysis of mouse TAT complexes in plasma samples.

In conclusion, this study resulted in improved procedures for plasma collection.
and measurements of coagulation activation adjusted to the mouse coagulation system. The availability of the specific mouse TAT ELISA will give rapid and reliable information of the mouse coagulation status. This methodology may improve the quality of studies aimed at elucidating the pathophysiology of coagulation activation in mice.

Acknowledgments
We like to thank Willy Morriën-Salomon, Joost Daalhuisen and Ingvild Kopp from the Academic Medical Center for their invaluable assistance. Hugo ten Cate is a Clinical Established Investigator of the Netherlands Heart Foundation. A short summary of the TAT laboratory procedure was previously published in Weijer et al. 2004, Journal of Infectious Diseases, 198 (12): 2308-2317

References