Search for 3- and 4-body decays of the scalar top quark in pp- collisions at root s = 1.8 TeV

Abazov, V.M.; Balm, P.W.; Blekman, F.; Bos, K.; Peters, O.

Published in:
Physics Letters B

DOI:
10.1016/j.physletb.2003.12.001

Citation for published version (APA):
https://doi.org/10.1016/j.physletb.2003.12.001
Search for 3- and 4-body decays of the scalar top quark in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV

DØ Collaboration

V. Zutshia, E.G. Zverevw, A. Zylbersteinm

a Universidad de Buenos Aires, Buenos Aires, Argentina
b LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
c Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
d Institute of High Energy Physics, Beijing, PR China
e Universidad de los Andes, Bogotá, Colombia
f Charles University, Center for Particle Physics, Prague, Czech Republic
g Institut des Sciences Nucléaires, IN2P3-CNRS, Université de Grenoble I, Grenoble, France
h CPPM, IN2P3-CNRS, Université de la Méditerranée, Marseille, France
i Laboratoire de l’Accélérateur Linéaire, IN2P3-CNRS, Orsay, France
j LPNHE, Universités Paris VI and VII, IN2P3-CNRS, Paris, France
k DAPNIA/Service de Physique des Particules, CEA, Saclay, France
l Universität Mainz, Institut für Physik, Mainz, Germany
m Panjab University, Chandigarh, India
n Delhi University, Delhi, India
o Tata Institute of Fundamental Research, Mumbai, India
p FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands
q University of Nijmegen/NIKHEF, Nijmegen, The Netherlands
r Joint Institute for Nuclear Research, Dubna, Russia
s Institute for Theoretical and Experimental Physics, Moscow, Russia
t Moscow State University, Moscow, Russia
u Institute for High Energy Physics, Protvino, Russia
v Lancaster University, Lancaster, UK
w Imperial College, London, UK
ab Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA
ac University of California, Davis, CA 95616, USA
ad California State University, Fresno, CA 93740, USA
ae University of California, Irvine, CA 92697, USA
af University of California, Riverside, CA 92521, USA
ag Florida State University, Tallahassee, FL 32306, USA
ah Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
ai University of Illinois at Chicago, Chicago, IL 60607, USA
aj Northern Illinois University, DeKalb, IL 60115, USA
ak Northwestern University, Evanston, IL 60208, USA
al Indiana University, Bloomington, IN 47405, USA
am University of Notre Dame, Notre Dame, IN 46556, USA
an Iowa State University, Ames, IA 50011, USA
ao University of Kansas, Lawrence, KS 66045, USA
ap Kansas State University, Manhattan, KS 66506, USA
aq Louisiana Tech University, Ruston, LA 71272, USA
ar University of Maryland, College Park, MD 20742, USA
as Boston University, Boston, MA 02215, USA
at Northeastern University, Boston, MA 02115, USA
au University of Michigan, Ann Arbor, MI 48109, USA
av Michigan State University, East Lansing, MI 48824, USA
aw University of Nebraska, Lincoln, NE 68588, USA
ax Columbia University, New York, NY 10027, USA
ay University of Rochester, Rochester, NY 14627, USA
az State University of New York, Stony Brook, NY 11794, USA
ba Brookhaven National Laboratory, Upton, NY 11973, USA
bb Langston University, Langston, OK 73050, USA
bc University of Oklahoma, Norman, OK 73019, USA
Abstract

We have searched for the signature of 3- and 4-body decays of pair-produced scalar top quarks (stop) in the inclusive final state containing an electron, a muon, and significant missing transverse energy using a sample of $p\bar{p}$ events corresponding to 108.3 pb$^{-1}$ of data collected with the DØ detector at Fermilab. The search is done in the framework of the minimal supersymmetric standard model assuming that the neutralino ($\tilde{\chi}_1^0$) is the lightest supersymmetric particle and is stable. No evidence for a signal is found and we derive cross-section upper limits as a function of stop (\tilde{t}) and neutralino masses in different decay scenarios leading to the $b\ell\nu\tilde{\chi}_1^0$ final state.

Supersymmetry (SUSY) [1] is a hypothetical symmetry between bosons and fermions that could lead to an extension of the standard model (SM). SUSY predicts additional elementary particles with quantum numbers identical to those of the SM, except for their spins which differ by a half unit. Their masses must also differ since no evidence has been found for new particles with masses equal to those of the SM. In several SUSY models, the large mass of the top quark induces a strong mixing between the supersymmetric partners of the two chirality states of the top quark leading naturally to two physical states of very different mass [2]. The lightest stop, denoted \tilde{t} in this Letter, could therefore be significantly lighter than the other squarks rendering it a particularly auspicious choice for a direct search.

The production of a pair of stops at the Tevatron proceeds through gluon fusion or quark–antiquark annihilation, and its cross-section, for a given stop mass ($m_{\tilde{t}}$), is known at next-to-leading order (NLO) with a precision of 8% [3]. The phenomenology of stop decays depends on the assumptions made in the SUSY model. In the framework of the minimal supersymmetric standard model (MSSM) [4] with R-parity [5] conservation, the lightest SUSY particle (LSP) is stable. In a previous publication [6] we performed this search assuming that the scalar neutrino (sneutrino, $\tilde{\nu}$) is the LSP and derived exclusion limits reaching higher stop masses than those of previous similar searches [7–9]. In this Letter we assume that the neutralino is the LSP.

We consider alternative scenarios to what has been done in most of the searches at the CERN LEP collider [8,9] or at the Fermilab Tevatron [7,10–12]. Those studies searched for the 2-body decays, $\tilde{t} \rightarrow c\tilde{\chi}_1^0$ or $\tilde{t} \rightarrow b\tilde{\chi}_1^+$ (where $\tilde{\chi}_1^+$ is the lightest chargino of the MSSM); it has been recently realized [13] that even if the $\tilde{t} \rightarrow b\tilde{\chi}_1^+$ decay is kinematically forbidden, as will be assumed in the following, the $\tilde{t} \rightarrow c\tilde{\chi}_1^0$ channel may not be the dominant one for stop masses accessible at LEP or the Tevatron ($m_{\tilde{t}} \gtrsim 90$ GeV) when the ratio of the two vacuum expectation values of the Higgs fields is not large ($\tan \beta \lesssim 5$) [14]. The 3-body decays $\tilde{t} \rightarrow bW\tilde{\chi}_1^0$ and/or $\tilde{t} \rightarrow b\ell\tilde{\nu}$ could be kinematically allowed, and if not, the corresponding 4-body decays $\tilde{t} \rightarrow bf\tilde{f}\tilde{\chi}_1^0$ (where $f \tilde{f}$ originate from the decay of the virtual W boson produced by $\tilde{t} \rightarrow b\tilde{\chi}_1^+$) followed by $\tilde{\chi}_1^+ \rightarrow W\tilde{\chi}_1^0$ and $\tilde{t} \rightarrow b\ell\nu\tilde{\chi}_1^0$ (with $\nu\tilde{\chi}_1^0$ from the decay of the virtual sneutrino)
produced by $\tilde{\chi}_1^+ \rightarrow \tilde{\nu} \ell$ are generally allowed, i.e., when $m_1 \gtrsim m_{\tilde{\nu}} + m_\ell + m_\ell$. When the 3-body decay $b\ell\tilde{\nu}$ is kinematically allowed, the subsequent decay of the $\tilde{\nu}$ has no influence on the kinematics. In this case we quote the results established in Ref. [6].

The experimental signature for 3- and 4-body decays of a $\tilde{t}\tilde{t}$ pair consists of two b quarks, two fermions, and missing transverse energy. Since our search is based on the presence of charged leptons in the final state, we have access only to the case where the fermion f (f') is a neutral (charged) lepton. The final states of all these 3- and 4-body decays are thus identical ($b\ell\nu\tilde{\nu}^0$). The underlying process depends on the SUSY parameters, and can be a mixture of the described processes. In the following, the analysis is performed assuming the complete dominance of each of these four cases in turn, and will be referred to as 3- or 4-body decay in the “W” or “light $\tilde{\nu}$” exchange scenario. We assume that the leptonic branching ratios enter the lepton family.

In our search, the leptons can be e, μ or τ, but τ leptons are considered only if they decay into $e\nu\nu$ or $\mu\nu\nu$. We place no requirements on the presence of jets and use only the $ee\tilde{\tau}$ or $\mu\mu\tilde{\tau}$ channels. The missing transverse energy (\slashed{E}_T) represents the measured imbalance in transverse energy due to the escaping neutrinos and neutralinos, and is obtained experimentally from the vector sum of the transverse energy measured in the calorimeter and in the muon spectrometer system. The event sample corresponds to 108.3 pb$^{-1}$ of data collected by the DØ experiment at Fermilab during the Run 1 of the Tevatron.

A detailed description of the DØ detector and its triggering system can be found in Ref. [16]. This analysis is mainly based on three subsystems: the uranium/liquid-argon calorimeter for identifying electron candidates and measuring electromagnetic and hadronic energies; the inner detector for tracking charged particles and to differentiate photons from electrons; and the muon spectrometer to identify and measure the required muon.

The data and pre-selection criteria are identical to those published in Ref. [6], however for the new channels considered in this analysis (W-exchange scenario, and 4-body decay in the light sneutrino scenario), we apply a stricter final event selection. The initial selection requires events to have one or more isolated electrons with transverse energy $E^e_T > 15$ GeV, and one or more isolated muons with $E^\mu_T > 15$ GeV, and $\slashed{E}_T > 20$ GeV. A lepton is isolated if its distance in the $\eta-\varphi$ plane from the closest jet is greater than 0.5, where η and φ are the standard pseudorapidity and azimuthal angle variables. Jets are found using a cone algorithm with a radius of 0.5 in the $\eta-\varphi$ plane. Events are also required to satisfy $15^\circ < \Delta_\eta^\mu < 165^\circ$ and $\Sigma_1^e < 2.0$, where Δ_η^μ and Σ_1^e are two kinematic quantities which are used to increase the rejection of the SM background [17] and are defined as: $\Delta_\eta^\mu \equiv |\varphi_\ell - \varphi_\mu|$, where φ is the azimuthal angle of the lepton ℓ, and $\Sigma_1^e \equiv |\eta_\ell + \eta_\mu|$, where η_ℓ is its pseudorapidity. The distributions of these kinematic quantities after these initial requirements (which correspond to the final selection criteria of Ref. [6]) are shown in Fig. 1(a)–(c), (e), (f).

The final event selection of this analysis uses the following additional requirements: if the event has one jet with transverse energy greater than 15 GeV, we require that the distance in the $\eta-\varphi$ plane $D_{\eta\varphi}^{1,1} < 1.5$, $D_{\eta\varphi}^{1,2}$ is defined as the smaller of the two distances between the highest energy jet and each of the two leptons. If the event has two or more jets with transverse energy greater than 15 GeV, we require in addition that the second distance $D_{\eta\varphi}^{1,2} < 1.5$. $D_{\eta\varphi}^{1,1}$ is defined as the distance between the second highest energy jet and the lepton that was not used to define $D_{\eta\varphi}^{1,1}$. These requirements reduces the SM background by about a factor of two and removes only a small part (< 5%) of the signal in the kinematic domain of the present analysis. The distributions of the transverse energy of any associated jets, $D_{\eta\varphi}^{1,1}$ and $D_{\eta\varphi}^{1,2}$ are shown in Fig. 1(d), (g) and (h), before applying these requirements.

The dominant SM processes that result in the $e\mu\tilde{\tau}$ signature are, in order of decreasing importance: (i) multi-jet processes (called “QCD” in the following) with one jet misidentified as an electron and one true muon originating from another jet (muon misidentification in our final sample is negligible);
Fig. 1. Distributions after initial selection cuts for the total background (open histogram), the sum of the total background and the expected 4-body decay stop signal for $m_{\tilde{t}} (m_{\tilde{\chi}^0_1}) = 120 (60)$ GeV in the light sneutrino scenario (shaded histogram), and the data (points) of (a) the transverse energy of the electron, (b) the transverse energy of the muon, (c) the missing transverse energy, (d) the transverse energy of any jets present, (e) the difference in azimuthal angle between the two leptons, (f) the absolute value of the sum in η of the two leptons, and (g) the smallest lepton to jet distance in the event when at least one jet is reconstructed, (h) the distance between the lepton and jet that have not been used in (g), when two jets are reconstructed. For the final selection, all events having distances in (g) or (h) above 1.5 are rejected.

(ii) $Z \rightarrow \tau\tau \rightarrow e\mu\nu\bar{\nu}$; (iii) $WW \rightarrow e\mu\nu\bar{\nu}$; (iv) $t\bar{t} \rightarrow e\mu\nu\bar{\nu}jj$. The Drell–Yan process ($DY \rightarrow \tau\tau \rightarrow e\mu\nu\bar{\nu}$) contributes less than 0.02 events after the final event selection. The QCD background is determined using the data, following the procedure described in Ref. [18]. The other SM backgrounds are estimated using MC samples processed through the full data analysis chain.

For simulation of the signal, we use the SPYTHIA [19] event generator with its standard hadronization and fragmentation functions and the CTEQ3M [20] parton distribution functions. The stop decay is generated using COMPHEP [21]. Detector simulation is performed using the fast DØ simulation/reconstruction program, which agrees with reference samples passed through the full DØ analysis chain. The $t\bar{t}$ samples are simulated for stop masses varying between 80 and 145 GeV and for neutralino masses varying between 30 and 85 GeV. The chargino mass is set equal to 140 GeV, to prevent the possibility of 2-body decay. The samples are produced separately for the W-exchange and for the light sneu-
trino scenarios. In the light sneutrino scenario, the mass of the sneutrino is varied between 40 and 80 GeV for the 3-body decay, and is set to \(m_\tilde{\nu} = m_h \) for the 4-body decay (the number of selected signal events slightly increases when the virtual sneutrino mass is increased, and we make a conservative choice).

The expected cross-sections for the background processes and the numbers of events passing the final selection are given in Table 1, and compared to the expected 4-body decay stop signal for \(m_\tilde{\chi} = 120 \) GeV in the light sneutrino and \(W \)-exchange scenarios. The efficiency for selecting the signal varies between 1% and 4% and is largest for high stop masses and low neutralino masses. The most significant sources of uncertainties on the number of signal events passing the selection criteria are given in Ref. [6] and combine to approximately 18%. The total systematic error for the background is about 10%. This error is dominated by the uncertainty on the QCD background (7%) and on the cross-sections for the background processes (10–17%).

The agreement between the number of observed events and the expected SM background allows us to set cross-section upper limits on stop pair production. We make the assumption that all non-SM processes, except the ones specifically searched for, can be neglected. This translates to more conservative limits.

The two main scenarios that we study are dependent on the sneutrino mass: if \(m_\tilde{\nu} \) is large (\(m_\tilde{\nu} \gtrsim 2m_W \)) the decay \(\tilde{\chi}^+_1 \to \ell\overline{\nu} \) can be neglected, and only the decay \(\tilde{\chi}^+_1 \to W\tilde{\chi}^0_1 \) contributes significantly, leading to the so-called \(W \)-exchange scenario. Otherwise, the decay \(\tilde{\chi}^+_1 \to \ell\overline{\nu} \) plays a significant role, and is assumed to be dominant in the so-called light sneutrino scenario, as is the case, for instance, if \(m_\tilde{\nu} \lesssim m_W \) [17]. Experimentally the light sneutrino scenario has an advantage since leptons are always present in the final state, while this is the case for only about one-third of the stops decaying via \(W \)-exchange. The exact proportion of the two scenarios depends on the MSSM parameters; we treat them separately, assuming 100% branching ratio in each mode.

Cross-section limits in the \(W \)-exchange scenario are shown in Fig. 2 for three different neutralino masses, \(m_{\tilde{\chi}} = 40, 50 \) and 60 GeV. Even at low \(m_{\tilde{\chi}} \) and \(m_\tilde{\nu} \), the limits are about a factor of two higher than the expected cross-section, so this 4-body decay scenario cannot be excluded with these data. The limits for the 3-body decay (i.e., when \(m_\tilde{\nu} > m_W + m_b + m_{\tilde{\chi}} \)) are also shown, but are about an order of magnitude larger than the expected cross-section. Our results are compared to those of the CDF Collaboration [7] obtained assuming \(t \to b\tilde{\chi}^+_1 \) followed by \(\tilde{\chi}^+_1 \to f\overline{f}\tilde{\chi}^0_1 \) via a virtual \(W \) boson, with \(m_{\tilde{\chi}} = 90 \) GeV and \(m_{\tilde{\chi}} = 40 \) GeV.

Upper limits on the cross-section in the light sneutrino scenario are shown in Fig. 3 assuming \(m_{\tilde{\chi}} \lesssim m_\tilde{\nu} = 60, 80 \) GeV for the 3-body decay, and \(m_{\tilde{\chi}} = 50, 60 \) GeV for the 4-body decay where \(m_\tilde{\nu} = m_t - m_b \). The limits are stronger than those obtained for the

Table 1

Cross-sections for the background processes, expected numbers of events surviving the final selection criteria for an integrated luminosity of 108.3 pb\(^{-1}\), number of events selected in the \(e\mu B\bar{B} \) data sample, and expected 4-body decay stop signal assuming \(m_\tilde{\chi} (m_{\tilde{\chi}}) = 120 \) (60) GeV in the light sneutrino scenario and in the \(W \)-exchange scenario

<table>
<thead>
<tr>
<th>Process</th>
<th>Cross-section (pb)</th>
<th>Number of events after selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>"QCD"</td>
<td>1.70</td>
<td>4.3 ± 0.3</td>
</tr>
<tr>
<td>(Z \to \tau\tau)</td>
<td>0.69</td>
<td>2.8 ± 0.3</td>
</tr>
<tr>
<td>WW</td>
<td>0.40</td>
<td>0.4 ± 0.1</td>
</tr>
<tr>
<td>(t\bar{t})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total background</td>
<td>–</td>
<td>8.0 ± 0.8</td>
</tr>
<tr>
<td>Data</td>
<td>–</td>
<td>6</td>
</tr>
<tr>
<td>(\tilde{t}\tilde{\nu}) (light sneutrino scenario with (m_\tilde{\nu} = m_t - m_b))</td>
<td>1.00</td>
<td>4.9 ± 0.89</td>
</tr>
<tr>
<td>(\tilde{t}\tilde{\nu}) ((W)-exchange scenario)</td>
<td>0.11</td>
<td>1.0 ± 0.18</td>
</tr>
</tbody>
</table>
Fig. 2. Cross-section upper limit as a function of $m_{\tilde{t}}$ for $m_{\tilde{\chi}^0_1} = 40, 50$ and 60 GeV, in the W exchange scenario. The 3-body decay limits are shown as dashed lines, the 4-body decay limits as solid lines. The results of this analysis are compared to the CDF limit on the $\tilde{t} \to b \chi_1^+ W^-$ 2-body decay assuming a light χ_1^+ ($m_{\chi_1^+} = 90$ GeV) and subsequent decay $\chi_1^+ \to W^+ \tilde{\chi}_1^0$ with $m_{\tilde{\chi}_1^0} = 40$ GeV. The expected NLO cross-section is also shown (the error band is obtained by varying the factorization scale μ). The renormalization scale is taken to be equal to μ.

W-exchange scenario since two charged leptons are always present in the final state. The limits are below the expected cross-section for some part of the $(m_{\tilde{t}}, m_{\tilde{\chi}^0_1})$ plane: for instance, for $m_{\tilde{\chi}^0_1} = 50$ GeV the 4-body decay scenario is excluded for $90 \lesssim m_{\tilde{t}} \lesssim 120$ GeV. The limits for the 3-body decay are stronger, extending to $m_{\tilde{t}} = 140$ GeV for $m_{\tilde{\chi}^0_1} = 60$ GeV.

The results obtained by CDF [11] assuming 3- or 4-body decay with a light sneutrino mass equal, respectively, to $m_{\tilde{\chi}_1^0}$ and $m_{\tilde{t}} - m_b$. The results obtained by CDF [11] assuming 100% branching ratio for $\tilde{t} \to c \chi_1^0$ and at LEP [23], in the $c \chi_1^0$ and $\tilde{t} \to b \nu \tilde{\nu}$ channels, are also shown. ALEPH has recently reported the first search at for 4-body decays of the stop [9]. Their limit, when assuming 100% branching ratio for $\tilde{t} \to b \nu \chi_1^0$, is about 95 GeV for $m_{\chi_1^0} \approx 75$ GeV, and is also shown in Fig. 4. It is slightly lower when no assumptions on the branching ratio and on the $\tilde{t}tZ$ coupling are made. All these limits indicate that all decays of stops having masses lower than approximately 115 GeV are strongly constrained when the neutralino mass is lighter than approximately 50 GeV.

In conclusion, our analysis places new cross-section limits on stop pair production as a function of the stop and neutralino masses by considering the 3- and 4-body decays of the stop, i.e., taking into account the possibility that the loop-induced $\tilde{t} \to c \chi_1^0$ decay is negligible when the $b \chi_1^0$ decay is not kinematically allowed: if the sneutrino is of comparable mass to the stop or lighter, the existence of a stop with a mass smaller than approximately 120 GeV is excluded for $m_{\tilde{\chi}^0_1} \lesssim 50$ GeV. If the sneutrino mass is smaller than 60 GeV, the mass exclusion domain extends up to a stop mass of 140 GeV. Without assumptions on the sneutrino mass, no exclusion domain can be set in the light sneutrino scenario, and we thus provide new cross-section upper limits on stop pair production in the W-exchange scenario up to $m_{\tilde{t}} = 140$ GeV.

Fig. 3. Cross-section upper limit in the light sneutrino scenario as a function of $m_{\tilde{\nu}}$ for the 3-body decay with $m_{\tilde{\nu}} < m_{\tilde{t}} = 60, 80$ GeV as established in Ref. [6], and for the 4-body decay with $m_{\tilde{\nu}} = 50, 60$ GeV and $m_{\tilde{\chi}^0_1} = m_{\tilde{t}} - m_b$. The 3-body decay limits are shown as dashed lines, the 4-body decay limits as solid lines. The expected NLO cross-section is also shown (the error band is obtained by varying the factorization scale μ).

Fig. 4. Excluded regions in the ($m_{\tilde{t}}, m_{\tilde{\chi}_1^0}$) plane for the $\tilde{t} \rightarrow b\ell\tilde{\nu}_1$ decay channel in the MSSM, assuming 3- or 4-body decay with a light sneutrino mass equal, respectively, to $m_{\tilde{\nu}}$ and $m_{\tilde{t}} - m_b$.

The chargino mass is assumed to be $m_{\tilde{\chi}_1^+} = 140$ GeV. The 3-body decay result was established in Ref. [6] and is compared to the LEP 1 (invisible width) and LEP 2 ($\tilde{t} \rightarrow b\ell\tilde{\nu}$) results under the same assumption ($m_{\tilde{\nu}} = m_{\tilde{\chi}_1^0}$). The results of this analysis are also compared to the exclusion limits obtained for the $\tilde{t} \rightarrow c\tilde{\chi}_1^0$ decay channels at LEP 2 and at the Tevatron by the CDF collaboration, and for the $\tilde{t} \rightarrow b\ell\tilde{\nu}$ decay channel at LEP 2 by the ALEPH collaboration.

Acknowledgements

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the Department of Energy and National Science Foundation (USA), Commissariat à L’Energie Atomique and CNRS/Institut National de Physique Nucléaire et de Physique des Particules (France), Ministry for Science and Technology and Ministry of Atomic Energy (Russia), CAPES and CNPq (Brazil), Departments of Atomic Energy and Science and Education (India), Colciencias (Colombia), CONACyT (Mexico), Ministry of Education and KOSEF (Korea), CONICET and UBACyT (Argentina), The Foundation for Fundamental Research on Matter (The Netherlands), PPARC (United Kingdom), Ministry of Education (Czech Republic), A.P. Sloan Foundation, and the Research Corporation.

References

H.E. Haber, G.L. Kane, Phys. Rep. 117 (1985) 75.