Search for 3- and 4-body decays of the scalar top quark in pp- collisions at root s = 1.8 TeV
Abazov, V.M.; Balm, P.W.; Blekman, F.; Bos, K.; Peters, O.

Published in:
Physics Letters B

DOI:
10.1016/j.physletb.2003.12.001

Citation for published version (APA):
Search for 3- and 4-body decays of the scalar top quark in $p \bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV

DØ Collaboration

D. Hedina, J.M. Heinmillera, A.P. Heinsona, U. Heintzb, M.D. Hildretha, R. Hiroskyb, J.D. Hobbsd, B. Hoeneisenc, J. Huanga, Y. Huanga, I. Iashvilia, R. Illingwortha, A.S. Itoa, M. Jaffrék, S. Jaina, R. Jesiće, K. Johnsa, M. Johnsona, A. Jonckheerea, H. Jöstleina, A. Justea, W. Kahla, S. Kahnb, E. Kajfaszj, A.M. Kalininu, D. Karmanovw, D. Karngardm, R. Kehoea, A. Khanova, A. Kharchilavaa, B. Klimaa, W. Koa, J.M. Kohlio, A.V. Kosyrevx, J. Kotcherb, B. Kotharia, A.V. Kozelovx, E.A. Kozlovskyx, J. Kranea, M.R. Krishnaswamyq, P. Krivkovaf, S. Krzywdzinskia, M. Kubantseva, S. Kuleshovv, Y. Kulika, S. Kunoria, A. Kupcoa, V.E. Kuznetsova, G. Landsbergb, W.M. Leea, A. Leflatw, F. Lehnera, C. Leonidopoulosa, J. Lib, Q.Z. Lia, J.G.R. Limac, D. Lincolna, S.L. Linna, J. Linnemanna, R. Liptona, A. Lucottec, L. Luekinga, C. Lundstedta, C. Luoa, A.K.A. Macielj, R.J. Madarasa, V.L. Malyshevu, V. Manankovw, H.S. Maod, T. Marshalla, M.I. Martina, A.A. Mayorovx, R. McCarthya, T. McMahonb, H.L. Melansona, M. Merkinw, K.W. Merritta, C. Miaob, H. Miettinenb, D. Mihalceaa, N. Mokhova, N.K. Mondals, H.E. Montgomerya, R.W. Moorea, Y.D. Mutafa, E. Nagyj, F. Nanga, M. Naraina, V.S. Narasimhama, N.A. Naumannt, H.A. Neala, J.P. Negrete, A. Nomeroskia, T. Nunnemanna, D. O’Neala, V. Oguric, B. Olivier1, N. Oshimaa, P. Padleyb, K. Papageorgiua, N. Parashara, R. Partridgeb, N. Paruaa, A. Patwaa, O. Petersa, P. Pétroffk, R. Piegaiaa, B.G. Popea, E. Popkova, H.B. Prospera, S. Protopopescub, M.B. Przybyciena, J. Qiana, R. Rajaa, S. Rajagopalb, P.A. Rapidisa, N.W. Reaya, S. Reucrofta, M. Ridelk, M. Rijsenbeeka, F. Rizatdinovaa, T. Rockwella, C. Royonp, M. Rubinova, R. Ruchtim, B.M. Sabirovu, G. Sajoti, A. Santoroc, L. Sawyera, R.D. Schambergera, H. Schellmana, A. Schwartzmana, E. Shabalinaa, R.K. Shivpurip, D. Shpakova, M. Shupea, R.A. Sidwella, V. Simaka, V. Sirotenkoa, P. Slatterya, R.P. Smitha, G.R. Snowa, J. Snowb, S. Snyderb, J. Solomona, Y. Songa, V. Sorina, M. Sosebeeb, N. Sotnikovaa, K. Soustruznikf, M. Souzab, N.R. Stantona, G. Steinbrücka, D. Stokera, V. Stolina, A. Stonea, D.A. Stoyanovax, M.A. Strangb, M. Straussb, M. Strovinka, L. Stuttea, A. Szajedorc, M. Talbyj, W. Taylora, S. Tentindo-Responda, S.M. Tripathia, T.G. Trippea, A.S. Turcotb, P.M. Tutsa, R. Van Kootena, V. Vanievx, N. Varelasa, F. Villeneuve-Seguierj, A.A. Volkovx, A.P. Vorobievx, H.D. Wahla, Z.-M. Wanga, J. Warcholm, G. Wattsb, M. Waynea, H. Weertsa, A. Whiteb, D. Whitesona, D.A. Wijngaardena, S. Willisa, S.J. Wimpennya, J. Womersleya, D.R. Wooda, Q. Xua, R. Yamadaa, P. Yaminb, T. Yasudaa, Y.A. Yatsunenkou, K. Yipb, S. Youssefa, J. Yub, M. Zanabriac, X. Zhangb, H. Zhenga, B. Zhoua, Z. Zhoua, M. Zielinskia, D. Zieminskaa, A. Zieminskia,
Supersymmetry (SUSY) [1] is a hypothetical symmetry between bosons and fermions that could lead to an extension of the standard model (SM). SUSY predicts additional elementary particles with quantum numbers identical to those of the SM, except for their spins which differ by a half unit. Their masses must also differ since no evidence has been found for new particles with masses equal to those of the SM. In several SUSY models, the large mass of the top quark induces a strong mixing between the supersymmetric partners of the two chirality states of the top quark leading naturally to two physical states of very different mass [2]. The lightest stop, denoted \(\tilde{t} \) in this Letter, could therefore be significantly lighter than the other squarks rendering it a particularly auspicious choice for a direct search.

The production of a pair of stops at the Tevatron proceeds through gluon fusion or quark–antiquark annihilation, and its cross-section, for a given stop mass \(m_{\tilde{t}} \), is known at next-to-leading order (NLO) with a precision of 8% [3]. The phenomenology of stop decays depends on the assumptions made in the SUSY model. In the framework of the minimal supersymmetric standard model (MSSM) [4] with \(R \)-parity [5] conservation, the lightest SUSY particle (LSP) is stable. In a previous publication [6] we performed this search assuming that the scalar neutrino (sneutrino, \(\tilde{\nu} \)) is the LSP and derived exclusion limits reaching higher stop masses than those of previous similar searches [7–9]. In this Letter we assume that the neutralino is the LSP. We consider alternative scenarios to what has been done in most of the searches at the CERN LEP collider [8,9] or at the Fermilab Tevatron [7,10–12].

Those studies searched for the 2-body decays, \(\tilde{t} \to c\tilde{\chi}^0_1 \) or \(\tilde{t} \to b\tilde{\chi}^0_1 \) (where \(\tilde{\chi}^0_1 \) is the lightest chargino of the MSSM); it has been recently realized [13] that even if the \(\tilde{t} \to b\tilde{\chi}^0_1 \) decay is kinematically forbidden, as will be assumed in the following, the \(\tilde{t} \to c\tilde{\chi}^0_1 \) channel may not be the dominant one for stop masses accessible at LEP or the Tevatron (\(m_{\tilde{t}} \geq 90 \text{ GeV} \)) when the ratio of the two vacuum expectation values of the Higgs fields is not large (\(\tan\beta \lesssim 5 \)) [14]. The 3-body decays \(\tilde{t} \to bW\tilde{\chi}^0_1 \) and/or \(\tilde{t} \to b\ell\tilde{\nu} \) could be kinematically allowed, and if not, the corresponding 4-body decays \(\tilde{t} \to bf\tilde{\chi}^0_1 \) (where \(f \tilde{f} \) originate from the decay of the virtual \(W \) boson produced by \(\tilde{t} \to b\tilde{\chi}^+_1 \) followed by \(\tilde{\chi}^+_1 \to W\tilde{\chi}^0_1 \)) and \(\tilde{t} \to b\ell\nu\tilde{\chi}^0_1 \) (with \(\nu\tilde{\chi}^0_1 \) from the decay of the virtual sneutrino)
produced by $\tilde{\chi}^+_1 \rightarrow \tilde{v}\ell$ are generally allowed, i.e., when $m_\tilde{\chi}^+_1 > m_{\tilde{\nu}} + m_\ell + m_\tilde{v}$. When the 3-body decay $b\ell\tilde{v}$ is kinematically allowed, the subsequent decay of the \tilde{v} has no influence on the kinematics. In this case we quote the results established in Ref. [6].

The experimental signature for 3- and 4-body decays of a $\tilde{t}t$ pair consists of two b quarks, two fermions, and missing transverse energy. Since our search is based on the presence of charged leptons in the final state, we have access only to the case where the fermion f (f') is a neutral (charged) lepton. The final states of all these 3- and 4-body decays are thus identical ($b\ell\tilde{v}_R$). The underlying process depends on the SUSY parameters, and can be a mixture of the described processes. In the following, the analysis is performed assuming the complete dominance of each of these four cases in turn, and will be referred to as 3- or 4-body decay in the “W" or “light \tilde{v}” exchange scenario. We assume that the leptonic branching ratios are equal in each lepton family.

In our search, the leptons can be e, μ or τ, but τ leptons are considered only if they decay into $e\nu\tilde{v}$ or $\mu\nu\tilde{v}$. We place no requirements on the presence of jets and use only the $e\mu\tilde{E}_T$ or $\mu\mu\tilde{E}_T$ channels. The missing transverse energy (\tilde{E}_T) represents the measured imbalance in transverse energy due to the escaping neutrinos and neutralinos, and is obtained experimentally from the vector sum of the transverse energy measured in the calorimeter and in the muon spectrometer system. The event sample corresponds to 108.3 pb$^{-1}$ of data collected by the DØ experiment at Fermilab during the Run I of the Tevatron.

A detailed description of the DØ detector and its triggering system can be found in Ref. [16]. This analysis is mainly based on three subsystems: the uranium/liquid-argon calorimeter for identifying electron candidates and measuring electromagnetic and hadronic energies; the inner detector for tracking charged particles and to differentiate photons from electrons; and the muon spectrometer to identify and measure the required muon.

The data and pre-selection criteria are identical to those published in Ref. [6], however for the new channels considered in this analysis (W-exchange scenario, and 4-body decay in the light sneutrino scenario), we apply a stricter final event selection. The initial selection requires events to have one or more isolated electrons with transverse energy $E_T^e > 15$ GeV, and one or more isolated muons with $E_T^\mu > 15$ GeV, and $\tilde{E}_T > 20$ GeV. A lepton is isolated if its distance in the η-φ plane from the closest jet is greater than 0.5, where η and φ are the standard pseudorapidity and azimuthal angle variables. Jets are found using a cone algorithm with a radius of 0.5 in the pseudorapidity and azimuthal angle variables. Jets are identified using the uranium/liquid-argon calorimeter for identifying pions, kaons, and protons, and the muon spectrometer to identify and measure the required muon.

The data and pre-selection criteria are identical to those published in Ref. [6], however for the new channels considered in this analysis (W-exchange scenario, and 4-body decay in the light sneutrino scenario), we apply a stricter final event selection. The initial selection requires events to have one or more isolated electrons with transverse energy $E_T^e > 15$ GeV, and one or more isolated muons with $E_T^\mu > 15$ GeV, and $\tilde{E}_T > 20$ GeV. A lepton is isolated if its distance in the η-φ plane from the closest jet is greater than 0.5, where η and φ are the standard pseudorapidity and azimuthal angle variables. Jets are found using a cone algorithm with a radius of 0.5 in the pseudorapidity and azimuthal angle variables. Jets are identified using the uranium/liquid-argon calorimeter for identifying pions, kaons, and protons, and the muon spectrometer to identify and measure the required muon.

The data and pre-selection criteria are identical to those published in Ref. [6], however for the new channels considered in this analysis (W-exchange scenario, and 4-body decay in the light sneutrino scenario), we apply a stricter final event selection. The initial selection requires events to have one or more isolated electrons with transverse energy $E_T^e > 15$ GeV, and one or more isolated muons with $E_T^\mu > 15$ GeV, and $\tilde{E}_T > 20$ GeV. A lepton is isolated if its distance in the η-φ plane from the closest jet is greater than 0.5, where η and φ are the standard pseudorapidity and azimuthal angle variables. Jets are found using a cone algorithm with a radius of 0.5 in the pseudorapidity and azimuthal angle variables. Jets are identified using the uranium/liquid-argon calorimeter for identifying pions, kaons, and protons, and the muon spectrometer to identify and measure the required muon.

4 These requirements were not applied in Ref. [6] since in the $t \rightarrow b\ell\tilde{v}$ 3-body decay, the jets are in average more distant from the leptons and the selection requirements would remove a larger fraction of signal events.
Fig. 1. Distributions after initial selection cuts for the total background (open histogram), the sum of the total background and the expected 4-body decay stop signal for $m_{\tilde{t}} (m_{\tilde{\chi}_1^0}) = 120 (60)$ GeV in the light sneutrino scenario (shaded histogram), and the data (points) of (a) the transverse energy of the electron, (b) the transverse energy of the muon, (c) the missing transverse energy, (d) the transverse energy of any jets present, (e) the difference in azimuthal angle between the two leptons, (f) the absolute value of the sum in η of the two leptons, and (g) the smallest lepton to jet distance in the event when at least one jet is reconstructed, (h) the distance between the lepton and jet that have not been used in (g), when two jets are reconstructed. For the final selection, all events having distances in (g) or (h) above 1.5 are rejected.

(ii) $Z \rightarrow \tau \tau \rightarrow e\mu \nu\bar{\nu}$; (iii) $WW \rightarrow e\mu \nu\bar{\nu}$; (iv) $t\bar{t} \rightarrow e\mu \nu\bar{\nu}jj$. The Drell–Yan process ($DY \rightarrow \tau \tau \rightarrow e\mu \nu\bar{\nu}$) contributes less than 0.02 events after the final event selection. The QCD background is determined using the data, following the procedure described in Ref. [18]. The other SM backgrounds are estimated using MC samples processed through the full data analysis chain.

For simulation of the signal, we use the SPYTHIA [19] event generator with its standard hadronization and fragmentation functions and the CTEQ3M [20] parton distribution functions. The stop decay is generated using COMPHEP [21]. Detector simulation is performed using the fast DØ simulation/reconstruction program, which agrees with reference samples passed through the full DØ analysis chain. The $t\bar{t}$ samples are simulated for stop masses varying between 80 and 145 GeV and for neutralino masses varying between 30 and 85 GeV. The chargino mass is set equal to 140 GeV, to prevent the possibility of 2-body decay. The samples are produced separately for the W-exchange and for the light sneu-
trino scenarios. In the light sneutrino scenario, the mass of the sneutrino is varied between 40 and 80 GeV for the 3-body decay, and is set to \(m_1 - m_b \) for the 4-body decay (the number of selected signal events slightly increases when the virtual sneutrino mass is increased, and we make a conservative choice).

The expected cross-sections for the background processes and the numbers of events passing the final selection are given in Table 1, and compared to the expected 4-body decay stop signal for \(m_1 = 120 \text{ GeV} \) and \(m^\nu_0 = 60 \text{ GeV} \) in the light sneutrino and \(W \)-exchange scenarios. The efficiency for selecting the signal varies between 1% and 4% and is largest for high stop masses and low neutralino masses. The most significant sources of uncertainties on the number of signal events passing the selection criteria are given in Ref. [6] and combine to approximately 18%. The total systematic error for the background is about 10%. This error is dominated by the uncertainty on the QCD background (7%) and on the cross-sections for the background processes (10–17%).

<table>
<thead>
<tr>
<th>Process</th>
<th>Cross-section (pb)</th>
<th>Number of events after selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>"QCD"</td>
<td>1.70</td>
<td>4.3 ± 0.3</td>
</tr>
<tr>
<td>(Z \rightarrow \tau \tau)</td>
<td>0.69</td>
<td>2.8 ± 0.3</td>
</tr>
<tr>
<td>(t\bar{t})</td>
<td>0.40</td>
<td>0.4 ± 0.1</td>
</tr>
<tr>
<td>Total background</td>
<td>–</td>
<td>8.0 ± 0.8</td>
</tr>
<tr>
<td>Data</td>
<td>–</td>
<td>6</td>
</tr>
<tr>
<td>(\tilde{t}\tilde{t}) (light sneutrino scenario with (m_{\tilde{t}} = m_1 - m_b))</td>
<td>1.00</td>
<td>4.9 ± 0.89</td>
</tr>
<tr>
<td>(\tilde{t}\tilde{t}) (W-exchange scenario)</td>
<td>0.11</td>
<td>1.0 ± 0.18</td>
</tr>
</tbody>
</table>

The agreement between the number of observed events and the expected SM background allows us to set cross-section upper limits on stop pair production. We make the assumption that all non-SM processes, except the ones specifically searched for, can be neglected. This translates to more conservative limits. The 95% confidence level (C.L.) limits are obtained using a Bayesian approach [22] that takes statistical and systematic uncertainties into account.

The two main scenarios that we study are dependent on the sneutrino mass: if \(m_{\tilde{\nu}} \) is large (\(m_{\tilde{\nu}} \gtrsim 2m_W \)) the decay \(\tilde{\chi}^+_1 \rightarrow \ell \tilde{\nu} \) can be neglected, and only the decay \(\tilde{\chi}^+_1 \rightarrow W \tilde{\nu}^0_1 \) contributes significantly, leading to the so-called \(W \)-exchange scenario. Otherwise, the decay \(\tilde{\chi}^+_1 \rightarrow \ell \tilde{\nu} \) plays a significant role, and is assumed to be dominant in the so-called light sneutrino scenario, as is the case, for instance, if \(m_{\tilde{\nu}} \lesssim m_W \) [17]. Experimentally the light sneutrino scenario has an advantage since leptons are always present in the final state, while this is the case for only about one-third of the stops decaying via \(W \)-exchange. The exact proportion of the two scenarios depends on the MSSM parameters; we treat them separately, assuming 100% branching ratio in each mode.

The limits for the 3-body decay (i.e., the decay \(\tilde{\chi}^+_1 \rightarrow \ell \tilde{\nu} \)) is also shown, but are about an order of magnitude larger than the expected cross-section. The limits for the 3-body decay cannot be excluded with these data. The limits for the 3-body decay (i.e., when \(m_1 > m_W + m_b + m_{\tilde{\nu}_1} \) are also shown, but are about an order of magnitude larger than the expected cross-section. The upper limits on the cross-section in the light sneutrino scenario are shown in Fig. 3 assuming \(m_{\tilde{\chi}^0_1} \leq m_{\tilde{\nu}} = 60, 80 \text{ GeV} \) for the 3-body decay, and \(m_{\tilde{\chi}^0_1} = 50, 60 \text{ GeV} \) for the 4-body decay where \(m_{\tilde{\nu}} = m_1 - m_b \). The limits are stronger than those obtained for the
Fig. 2. Cross-section upper limit as a function of $m_{\tilde{t}}$ for $m_{\tilde{\chi}^0_1} = 40$, 50 and 60 GeV, in the W exchange scenario. The 3-body decay limits are shown as dashed lines, the 4-body decay limits as solid lines. The results of this analysis are compared to the CDF limit on the $i \to h \tilde{\chi}^+_1$ 2-body decay assuming a light $\tilde{\chi}^+_1$ ($m_{\tilde{\chi}^+_1} = 90$ GeV) and subsequent decay $\tilde{\chi}^+_1 \to W_1 \tilde{\chi}^0_1$ with $m_{\tilde{\chi}^0_1} = 40$ GeV. The expected NLO cross-section is also shown (the error band is obtained by varying the factorization scale μ). The renormalization scale is taken to be equal to μ.

W-exchange scenario since two charged leptons are always present in the final state. The limits are below the expected cross-section for some part of the $(m_{\tilde{t}}, m_{\tilde{\chi}^0_1})$ plane: for instance, for $m_{\tilde{\chi}^0_1} = 50$ GeV the 4-body decay scenario is excluded for $90 \lesssim m_{\tilde{t}} \lesssim 120$ GeV. The limits for the 3-body decay are stronger, extending to $m_{\tilde{t}} = 140$ GeV for $m_{\tilde{\chi}^0_1} = 60$ GeV.

The resulting exclusion contours for the light sneutrino scenario are displayed in Fig. 4 in the $(m_{\tilde{\nu}_1}, m_{\tilde{\chi}^1_0})$ plane assuming 3- or 4-body decay with a light sneutrino mass equal, respectively, to $m_{\tilde{\nu}_1}$ and $m_{\tilde{\nu}_1} - m_{\tilde{\chi}^0_1}$. The results obtained by CDF [11] assuming 100% branching ratio for $i \to c \tilde{\chi}^0_1$ and at LEP [23], in the $c \tilde{\chi}^0_1$ and $i \to b \tilde{\nu}$ channels, are also shown. ALEPH has recently reported the first search at for 4-body decays of the stop [9]. Their limit, when assuming 100% branching ratio for $i \to b \ell \tilde{\nu} \tilde{\chi}^0_1$, is about 95 GeV for $m_{\tilde{\chi}^0_1} \simeq 75$ GeV, and is also shown in Fig. 4. It is slightly lower when no assumptions on the branching ratio and on the $\tilde{t}\tilde{t}Z$ coupling are made. All these limits indicate that all decays of stops having masses lower than approximately 115 GeV are strongly constrained when the neutralino mass is lighter than approximately 50 GeV.

In conclusion, our analysis places new cross-section limits on stop pair production as a function of the stop and neutralino masses by considering the 3- and 4-body decays of the stop, i.e., taking into account the possibility that the loop-induced $i \to c \tilde{\chi}^0_1$ decay is negligible when the $b \tilde{\chi}^+_1$ decay is not kinematically allowed: if the sneutrino is of comparable mass to the stop or lighter, the existence of a stop with a mass smaller than approximately 120 GeV is excluded for $m_{\tilde{\chi}^0_1} \lesssim 50$ GeV. If the sneutrino mass is smaller than 60 GeV, the mass exclusion domain extends up to a stop mass of 140 GeV. Without assumptions on the sneutrino mass, no exclusion domain can be set in the light sneutrino scenario, and we thus provide new cross-section upper limits on stop pair production in the W-exchange scenario up to $m_{\tilde{t}} = 140$ GeV.
Fig. 4. Excluded regions in the \((m_{\tilde{t}}, m_{\tilde{\chi}^0_1})\) plane for the \(\tilde{t} \to b\ell\tilde{\nu}\) decay channel in the MSSM, assuming 3- or 4-body decay with a light sneutrino mass equal, respectively, to \(m_{\tilde{\chi}^0_1}\) and \(m_{\tilde{t}} - m_b\). The chargino mass is assumed to be \(m_{\tilde{\chi}^+_1} = 140\) GeV. The 3-body decay result was established in Ref. [6] and is compared to the LEP 1 (invisible width) and LEP 2 (\(\tilde{t} \to b\ell\tilde{\nu}\)) results under the same assumption (\(m_{\tilde{\nu}} = m_{\tilde{\chi}^0_1}\)). The results of this analysis are also compared to the exclusion limits obtained for the \(\tilde{t} \to c\tilde{\chi}^0_1\) decay channels at LEP 2 and at the Tevatron by the CDF collaboration, and for the \(\tilde{t} \to b\ell\tilde{\nu}\) decay channel at LEP 2 by the ALEPH collaboration.

Acknowledgements

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the Department of Energy and National Science Foundation (USA), Commissariat à L’Energie Atomique and CNRS/Institut National de Physique Nucléaire et de Physique des Particules (France), Ministry for Science and Technology and Ministry for Atomic Energy (Russia), CAPES and CNPq (Brazil), Departments of Atomic Energy and Science and Education (India), Colciencias (Colombia), CONACYT (Mexico), Ministry of Education and KOSEF (Korea), CONICET and UBACyT (Argentina), The Foundation for Fundamental Research on Matter (The Netherlands), PPARC (United Kingdom), Ministry of Education (Czech Republic), A.P. Sloan Foundation, and the Research Corporation.

References