Molecular, biochemical end clinical aspects of peroxisomes biogenesis disorders
Gootjes, J.

Citation for published version (APA):
Gootjes, J. (2004). Molecular, biochemical end clinical aspects of peroxisomes biogenesis disorders

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 4

Novel mutations in the *PEX12* gene of patients with a peroxisome biogenesis disorder

Novel mutations in the PEX12 gene of patients with a peroxisome biogenesis disorder

Jeannette Gootjes¹, Frank Schmohl¹, Hans R. Waterham², Ronald J.A. Wanders¹²

Lab. Genetic Metabolic Diseases, Departments of ¹Clinical Chemistry and ²Pediatrics/Emma Children’s Hospital, Academic Medical Center, University of Amsterdam, The Netherlands.

Summary

The peroxisome biogenesis disorders (PBDs) form a genetically and clinically heterogeneous group of disorders due to defects in at least 11 distinct genes. The prototype of this group of disorders is Zellweger syndrome (ZS), with neonatal adrenoleukodystrophy (NALD) and infantile Refsum disease (IRD) as milder variants. Liver disease, variable neurodevelopmental delay, retinopathy and perceptive deafness are common to PBDs. PBD patients belonging to complementation group 3 (CG3) have mutations in the PEX12 gene, which codes for a protein (PEX12) that contains two transmembrane domains, and a zinc-binding domain considered to be important for its interaction with other proteins of the peroxisomal protein import machinery. We report on the identification of five PBD patients belonging to CG3. Sequence analysis of their PEX12 genes revealed five different mutations, four of which have not been reported before. Four of the patients have mutations that disrupt the translation frame and/or create an early termination codon in the PEX12 open reading frame predicted to result in truncated protein products, lacking at least the COOH-terminal zinc-binding domain. All these patients display the more severe phenotypes (ZS or NALD). The fifth patient expresses two PEX12 alleles capable of encoding a protein that does contain the zinc-binding domain and displayed a milder phenotype (IRD). The three biochemical markers measured in fibroblasts (DHAPAT activity, C26:0 β-oxidation and pristanic acid β-oxidation) also correlated with the genotypes. Thus, the genotypes of our CG3 patients show a good correlation with the biochemical and clinical phenotype of the patients.

Introduction

The peroxisome biogenesis disorders (PBDs; MIM: 601539), which include Zellweger syndrome (ZS; MIM: 214100), neonatal adrenoleukodystrophy (NALD; MIM: 202370) and infantile Refsum disease (IRD; MIM: 266510), represent a spectrum of disease severity with ZS being the most, and IRD the least severe disorder. Liver disease, variable neurodevelopmental delay, retinopathy and perceptive deafness are common to all the three PBDs.¹ Patients with ZS are severely hypotonic from birth and die before 1 year of age. Patients with NALD experience neonatal onset of hypotonia and seizures, and suffer from progressive white matter disease, dying usually in late infancy.² Patients with IRD may survive beyond infancy and some may even reach adulthood.³ Clinical differentiation between these disease states is not very well defined and patients can have overlapping symptoms.⁴

The absence of functional peroxisomes in patients with a PBD leads to a number of
biochemical abnormalities: (i) PBD patients have an impaired synthesis of plasmalogens, due to a deficiency of the two enzymes dihydroxyacetonephosphate acyltransferase (DHAPAT) and alkyl-dihydroxyacetonephosphate synthase (alkyl-DHAP-synthase).58 (ii) Peroxisomal fatty acid β-oxidation is defective, leading to the accumulation of very-long-chain fatty acids (VLCFAs), notably C26:0, the branched-chain fatty acid pristanic acid and the bile acid intermediates di- and trihydroxycholestanoic acid (DHCA and THCA).1 (iii) Phytanic acid α-oxidation and L-pipelic acid oxidation are impaired.1 While some peroxisomal enzymes are deficient, others show normal activity, including catalase, D-amino-acid oxidase, L-α-hydroxy-acid oxidase A and alanine:glyoxylate aminotransferase, although subcellular fractionation studies have shown that these enzymes are mislocalized to the cytoplasm.1

The PBDs are caused by genetic defects in PEX genes encoding proteins called peroxins, which are required for the biogenesis of peroxisomes and function in the assembly of the peroxisomal membrane or in the import of enzymes into the peroxisome.7 After synthesis on free polyribosomes, peroxisomal matrix proteins carrying either a carboxy-terminal peroxisomal targeting sequence 1 (PTS1) or a cleavable amino-terminal PTS2 signal are translocated across the peroxisomal membrane.7 A defect in one of the peroxins of the peroxisomal import machinery leads to failure of protein import via the PTS1- and/or PTS2-dependent import pathway and, consequently, to functional peroxisome deficiency. Cell fusion complementation studies using patient fibroblasts revealed the existence of at least 11 distinct genetic groups, of which currently all the corresponding PEX genes have been identified. Most complementation groups are associated with more than one clinical phenotype.7

PBD patients belonging to complementation group 3 (CG3) have mutations in the PEX12 gene (MIM: 601758).8 PEX12 was first identified in the yeast Pichia pastoris,9 and more recent studies have led to the identification of the human homologue of this gene.8101112 HsPEX12 encodes a 359 amino acid protein (PEX12), with a molecular weight of ~41 kDa. PEX12 is an integral peroxisomal membrane protein with a zinc-binding motif at its COOH terminus.910 It spans the peroxisomal membrane twice and exposes its NH2 and COOH termini to the cytoplasm. The protein interacts with PEX5 and PEX10 via its COOH-terminal zinc-binding domain, and is most likely involved in the actual process of translocation of peroxisomal matrix proteins across the peroxisomal membrane.13

In this study, we report the identification of novel mutations in the PEX12 gene in five PBD patients, which, using cell fusion complementation analysis, were shown to belong to complementation group 3. The correlation between genotypes and phenotypes are discussed.

Patients and Methods

Patient samples

All patients analyzed showed the clinical characteristics of PBDs. Based on their clinical characteristics patients have been diagnosed with ZS, NALD or IRD. Samples were collected from patients and sent to our laboratory for biochemical and molecular diagnosis.
Biochemical analysis
The biochemical diagnosis of a PBD was substantiated by detailed studies in primary skin fibroblasts, including the measurement of DHAPAT activity14 and C26:0 and pristanic acid β-oxidation,15 and immunofluorescence using antibodies against catalase, D-bifunctional protein and the PTS1 signal peptide SKL (Zymed laboratories, San Francisco, CA, USA).16

Complementation analysis
To identify the defective PEX gene in the patients, cell fusion complementation studies were performed.17 Fibroblasts from the patients were fused with index fibroblasts from known complementation groups. The resulting heterokaryons were assayed for complementation by catalase immunofluorescence as previously described.16

Mutation analysis
PEX12 mutation analysis in the patients was performed at the genomic DNA level. Genomic DNA was isolated from primary skin fibroblasts using the Wizard genomic DNA purification kit (Promega, Madison, WI, USA). The entire exons plus flanking intron sequences from the PEX12 gene were amplified by PCR using the primer sets shown in table 1. All forward and reverse primers used for mutation analysis were tagged with a -21M13 (5'-TGTTAAAACGACGGCCAGT-3') sequence and M13rev (5'-CAGGAAACAGCTATGACC-3') sequence, respectively. PCR fragments were sequenced in two directions using `-21M13' and 'M13rev' fluorescent primers on an Applied Biosystems 277A automated DNA sequencer, following the manufacturer's protocol (Perkin Elmer, Wellesley, MA, USA).

<table>
<thead>
<tr>
<th>Amplicon</th>
<th>5' primer (forward)</th>
<th>3' primer (reverse)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon 1</td>
<td>[-21M13]-TGAGCACCACATCTGATAC</td>
<td>[M13rev]-CGCTAGGCTACCAAATAAGC</td>
</tr>
<tr>
<td>Exon 2</td>
<td>[-21M13]-TGTGTGATGGAATGAATTCAC</td>
<td>[M13rev]-GGGATACGGATTTTCGAATTTAC</td>
</tr>
<tr>
<td>Exon 3</td>
<td>[-21M13]-GGAGATAGTACCAGTCTAC</td>
<td>[M13rev]-TACCATGCTGAAACCAGGCTC</td>
</tr>
</tbody>
</table>

Quantitative real-time RT-PCR analysis
Total RNA was isolated from primary skin fibroblasts using Trizol (Invitrogen, Carlsbad, CA, USA) extraction, after which cDNA was prepared using a first strand cDNA synthesis kit for RT-PCR (Roche, Mannheim, Germany). Quantitative real-time PCR analysis of PEX12 and β-2-microglobulin RNA was performed using the LightCycler FastStart DNA Master SYBR green I kit (Roche, Mannheim, Germany). The PEX12 primers used were: PEX12-LC-F, 5'-CAGCCAGGATGTTAGTGAG-3' and PEX12-LC-R, 5'-GGTTTTACGACACAGTGCCC-3'. The β-2-microglobulin primers used were: b2M-FW, 5'-TGAATTTGCTATGCTGCTGG-3' and b2M-REV, 5'-CATGTCTCGACCCACATTAAC-3'. The PCR program comprised a 10 min initial denaturation step at 95°C to activate the hot start polymerase, followed by 40 cycles of 95°C for 10 s, 58°C for 2 s and 72°C for 11 s (9 s for β-2-microglobulin). Fluorescence was measured at 82°C for PEX12 and 80°C for β-2-microglobulin. Melting curve analysis to show the generation of a single product for each reaction was carried out following the PCR program. Amplification of a single product of the correct size was also confirmed by agarose gel electrophoresis. Duplicate analysis was performed for all samples. Data were analyzed using LightCycler Software, version 3.5
Novel mutations in the PEX12 gene

(Roche, Mannheim, Germany). To adjust for variations in the amount of input RNA, the values for the PEX12 gene are normalized against the values for the housekeeping gene β-2-microglobulin and the patient ratios are presented as a percentage of the mean of two control fibroblast cell lines.

Results

In this study, we analyzed five patients affected by a PBD, as concluded from the finding of typical abnormalities in plasma (elevated levels of VLCFA, bile acid intermediates, pristanic and phytanic acid) and primary skin fibroblasts (deficient DHAPAT activity, C26:0 β-oxidation and pristanic acid β-oxidation and absence of catalase-positive particles visualized by immunofluorescence (table 2)).

Table 2 PEX12 mutations and biochemical markers in 5 patients with a PBD

<table>
<thead>
<tr>
<th>ID</th>
<th>Pheno type</th>
<th>Survival</th>
<th>Mutation in genomic DNA</th>
<th>Consequence</th>
<th>DHAPAT activity</th>
<th>C26:0 β-oxidation</th>
<th>Pris. acid β-oxidation</th>
<th>Catalase IF</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEX12-01</td>
<td>ZS</td>
<td>9 mo</td>
<td>887-888delTC<sup>c</sup></td>
<td>L296fs->307X</td>
<td>0.8</td>
<td>48</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>PEX12-02</td>
<td>IRD</td>
<td>2.5 yrs</td>
<td>273A>T<sup>q</sup></td>
<td>R91S</td>
<td>10.2</td>
<td>384</td>
<td>67</td>
<td>-</td>
</tr>
<tr>
<td>PEX12-03</td>
<td>ZS</td>
<td>4.5 mo</td>
<td>625C>T</td>
<td>Q209X</td>
<td>0.5</td>
<td>100</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>PEX12-04</td>
<td>NALD</td>
<td>5 mo</td>
<td>887-888delTC<sup>c</sup></td>
<td>L296fs->307X</td>
<td>0.6</td>
<td>236</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>PEX12-05</td>
<td>ZS</td>
<td>2.5 mo</td>
<td>308-309insT<sup>c</sup></td>
<td>L103fs->105X</td>
<td>0.5</td>
<td>107</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Control values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.8-12.3</td>
<td>1200-1500</td>
<td>675-1100</td>
<td>+</td>
</tr>
</tbody>
</table>

^anmol/2hr.mg protein ^bpmol/hr.mg protein ^chomozygous

In patient PEX12-2 normal levels of DHAPAT activity and a relatively high rate of C26:0 β-oxidation were found, but no peroxisomal localization of catalase. This prompted us to study the localization of other peroxisomal matrix proteins in these fibroblasts. D-bifunctional protein immunofluorescence revealed a particle-bound localization in approximately 40% of the cells, and immunofluorescence with antibodies against the PTS1 signal peptide SKL showed a particle-bound localization in approximately 50% of the cells (figure 1). In the positive cells, peroxisomes were larger and less abundant. These results indicate that although catalase is almost exclusively localized in the cytosol, other peroxisomal matrix proteins display a mosaic distribution. This may account for the mild biochemical abnormalities found in these cells.

Figure 1 Immunofluorescent staining of fibroblasts from control (a) and patient PEX12-02 (b-d). Cells were stained with antibodies against catalase (a,b), D-bifunctional protein (c) and the PTS1 signal peptide SKL (d).
Cell fusion complementation studies revealed that the five patients belong to CG3 with PEX12 as the causative gene. Sequence analysis of the PEX12 gene of these patients revealed five different mutations, four of which have not been reported before. The mutations involve one deletion, one insertion, one missense and two nonsense mutations (table 2). Patient PEX12-01 was homozygous for a 2-bp deletion (887-888delTC) that was previously described in a patient, who was compound heterozygous for this mutation.11 This mutation results in a frameshift and premature termination of the protein before the COOH-terminal zinc-binding domain (figure 2). Patient PEX12-02 was homozygous for a missense mutation (R91S) in the N-terminal part of the protein. Patient PEX12-03 was heterozygous for a nonsense mutation (Q209X) that truncates PEX12 before the second transmembrane domain, and a 2-bp deletion that was also found in patient PEX12-01. Patient PEX12-04 was homozygous for a nonsense mutation (R202X) that truncates PEX12 before the second transmembrane domain, and patient PEX12-05 was homozygous for a 1-bp insertion (308-309insT) that results in a frameshift and premature termination of the protein before the first transmembrane domain. Thus, four of the five mutations disrupt the translation frame and/or create an earlier termination codon in the PEX12 open reading frame, and are predicted to result in a truncated protein product (figure 2) or in no product at all.

![Figure 2](image)

In eukaryotic cells, the introduction of a nonsense codon into mRNA can also lead to nonsense-mediated decay of the mRNA and subsequent reduction in protein production, a process common in human genetic disease.18,19 To test for this latter possibility as a primary cause of PEX12 dysfunction in these patients, RNA from the patient cell lines was analyzed by real-time RT-PCR to quantify PEX12 mRNA. These analyses showed that the levels of PEX12 mRNA in patient PEX12-02, carrying the missense mutation, were relatively normal (figure 3). From the four patients with frameshift and/or nonsense mutations, patient PEX12-01, homozygous for the 887-888delTC mutation, displayed relatively normal PEX12 transcript levels (>80%). The PEX12 transcript level in patient PEX12-03, compound heterozygous for the mutation in patient PEX12-01 and the nonsense
Novel mutations in the PEX12 gene

mutation Q209X, was shown to be 50% of controls, whereas the level in patient PEX12-04 with the nonsense mutation R202X was markedly reduced to 20%. Patient PEX12-05, homozygous for the 308-309insT mutation, showed PEX12 transcript levels of 40%. Except for patient PEX12-01, these results indicate that PEX12 transcripts containing a nonsense codon are actively removed by nonsense-mediated decay.

![Figure 3](image)

Figure 3 Quantitative real-time RT-PCR analysis of PEX12. The PEX12/β-2-microglobulin ratios expressed as percentages of the mean of controls 1 and 2 are given.

Discussion

Mutations in PEX12 are known to underlie the disease in patients with a peroxisome biogenesis disorder belonging to CG3. Previous studies have shown a relatively straightforward relationship between genotype and phenotype in seven patients of this group. In this study, we determined the PEX12 genotypes of five additional patients, diagnosed in our laboratory. After having assigned the patients to CG3 by cell fusion complementation studies, we found mutations in the PEX12 gene of all the five patients, confirming that a defective PEX12 is indeed responsible for the disease in these patients. Four patients were apparent homozygotes for a mutation and one patient a heterozygote for two mutations. No parental DNA was available for confirmation of the zygosity. The mutations found involve one deletion, one insertion, one missense and two nonsense mutations. Four of the mutations have not been described previously.

Except for patient PEX12-02, all patients displayed the more severe phenotypes (ZS or NALD) and survived for less than 9 months. Patient PEX12-02 was diagnosed with IRD and survived for 2.5 years. All severely affected patients in our cohort lacked the COOH-terminal zinc-binding domain that is important for PEX12 function and interacts with PEX5 and PEX10. In cells of three of these four patients, reduced PEX12 mRNA levels were found, which will contribute to a reduced PEX12 function, but cannot explain this entirely. Unfortunately, no antibodies raised against full-length PEX12 are available to study protein stability of the truncated PEX12 products. The milder affected patient (patient PEX12-02) contained a missense mutation (R91S) in the N-terminus of the protein and, consequently, is predicted to produce full length PEX12. In 1998, Chang and Gould described a patient with a 2-bp deletion at the N-terminal part of the protein that theoretically would produce an eight amino acid protein. This patient had the IRD phenotype and in vitro translation showed that translation was re-initiated at a downstream AUG codon, at position 94. This shows that the first part of the protein is not obligatory for import/function of PEX12. Extrapolation of this result to our own data suggests that the R91S mutation does not have a major deleterious effect on PEX12 function.
Chapter 4

We found that, in our cohort, severe defects in PEX12 activity were associated with mutations that truncated PEX12 upstream of the COOH-terminal zinc-binding domain. Mutations in another zinc-binding domain-containing PEX10 have also been reported. In PEX10, one mutation leads to truncated PEX10 lacking the zinc-binding domain. All patients homozygous for this mutation were diagnosed with the severe ZS phenotype; so regarding the zinc-binding domain, the genotype-phenotype correlation for PEX12 seems to be similar to PEX10.

Recent studies in fibroblasts have shown that DHAPAT activity, C26:0 β-oxidation and, to a lesser extent, pristanic acid β-oxidation correlate best with patients' survival. The mutations in our cohort correlate rather good with the biochemical markers. All patients with truncated PEX12 proteins have a severely deficient DHAPAT activity and C26:0 and pristanic acid β-oxidation, whereas the IRD patient with the missense mutation has a normal DHAPAT activity, a mildly defective C26:0 and pristanic acid β-oxidation, and a mosaic distribution of peroxisomal matrix proteins, as demonstrated by immunofluorescence with antibodies against D-bifunctional protein and the PTS1 signal peptide SKL. Thus, the genotypes of our CG3 patients show a good correlation with the biochemical and clinical phenotype of the patients.

Acknowledgements

The authors thank Petra Mooijer and Conny Dekker for biochemical analyses in patient fibroblasts. This work was supported by the Prinse Beatrix Fonds, grant 99.0220.

References

Novel mutations in the PEX12 gene

