Optical trapping and manipulation of atoms near surfaces
Cornelussen, R.A.

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

Download date: 20 Dec 2018
Contents

1 General introduction 1
 1.1 Laser cooling 2
 1.2 Manipulating atoms using evanescent waves 2
 1.3 Loading scheme for evanescent-wave traps 3
 1.4 Bose-Einstein condensation 4
 1.5 Interferometry 5

2 Theory .. 7
 2.1 Propagating and evanescent light 8
 2.1.1 Plane waves, definitions and refraction phenomena . 8
 2.1.2 Energy density and energy flow 9
 2.1.3 Evanescent waves 10
 2.1.4 Effective evanescent-wave intensity 12
 2.1.5 Elliptically and circularly-polarized evanescent waves . 12
 2.2 Description of diffraction limited beams 13
 2.2.1 Propagating beam equations 13
 2.2.2 Reflection and transmission 14
 2.3 Atoms and their interaction with light 15
 2.3.1 Two-level atoms 15
 2.3.2 Multi-level atoms 17
 2.3.3 Rubidium 20
 2.4 Van der Waals interaction 20

3 Feasibility study for dipole traps at alternative wavelengths 25
 3.1 Introduction 26
 3.2 Earlier QUEST experiments 26
 3.3 Dipole polarizability tensor 29
 3.3.1 Light shift 29
 3.3.2 Dipole polarizability tensor 30
 3.3.3 Approximations of polarizability tensor 32
 3.4 Specific situation for rubidium 32
 3.4.1 Discussion of unit systems 32
 3.4.2 Dipole matrix elements and transition energies . 33
 3.4.3 Comparison with experimental polarizability values . 36
 3.5 Alternative QUEST wavelengths 36
 3.6 Conclusions 39
CONTENTS

4 Experimental setup

4.1 Laser park ... 42
 4.1.1 Frequency locked diode lasers: master and repumper 42
 4.1.2 MOT/molasses ... 42
 4.1.3 Probe and depumper 45
 4.1.4 Non-resonant lasers 45
4.2 Evanescent wave alignment procedure 46
4.3 Vacuum setup .. 47
 4.3.1 Setup for EW absorption experiments (chapter 6) 47
 4.3.2 Setup for EW trapping experiments (chapter 7) 49

5 Power-efficient frequency switching of a locked laser

5.1 Introduction .. 54
5.2 Experimental implementation 55
5.3 Analysis of transient behavior 57
5.4 Comparison with experimental data 59
5.5 Conclusions and outlook 61

6 Cold trapped atoms detected with evanescent waves

6.1 Introduction .. 64
6.2 Evanescent wave calculations 64
6.3 Time of flight experiments 66
6.4 Trapping .. 69
6.5 Conclusions and outlook 72

7 Analysis of an evanescent-wave dark-state trap

7.1 Low dimensional trapping 74
7.2 Experimental configuration 76
 7.2.1 Double EW trapping geometries 76
 7.2.2 Optical setup ... 79
7.3 Pump field optimization 79
 7.3.1 Pump field geometry and polarization 81
 7.3.2 Pump field intensity and decay length 83
7.4 Optimization of trap parameters 84
 7.4.1 Potentials .. 85
 7.4.2 Life time ... 85
 7.4.3 Trapping fraction 86
 7.4.4 Parameter optimization 89
 7.4.5 Consequences for the experiment 90
7.5 Probing considerations 91
 7.5.1 In-situ detection 91
 7.5.2 Time of flight detection 92
7.6 Experimental set-back: prism roughness 92
7.7 Conclusions .. 94
CONTENTS

8 An atom interferometer using spontaneous decay 97

8.1 Introduction 98

8.2 Semi-classical description 99

8.2.1 Primary rainbow caustic 99

8.2.2 Supernumerary rainbows 100

8.3 Time-independent approach 103

8.3.1 Analytical stationary solutions 103

8.3.2 Spontaneous Raman transfer 104

8.3.3 Results and discussion 105

8.4 Time-dependent approach 106

8.4.1 Transfer-free evolution 107

8.4.2 Spontaneous Raman transfer 108

8.4.3 Results and discussion 109

8.5 Experimental considerations 111

8.5.1 Computational limitations - experimental implications 111

8.5.2 Rb levels and optical pumping 111

8.5.3 Distribution of the spontaneously emitted photons 112

8.5.4 Detection 112

8.6 Discussion and conclusions 113

References 115

Summary 125

Samenvatting 127

Nawoord 133