The role of IgG and IgE in the development of allergy and asthma

Eijsink, P.E.D.

Link to publication

Citation for published version (APA):
Eijsink, P. E. D. (2004). The role of IgG and IgE in the development of allergy and asthma

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

Download date: 08 Dec 2018
Chapter 10

Summary

Samenvatting
Chapter 1

Atopic diseases are common in childhood. Despite our increasing understanding of these diseases, it is still unknown why a child develops IgE antibodies to usually harmless proteins. We know that it is determined by a combination of genetics and environment and that it starts early in life.

The introduction started with definitions of allergy and asthma and concluded that there is no agreed definition of asthma in young, pre-school children. This was followed by a description of immunological aspects of the allergy and asthma processes. The essence of the allergic response is the production of IgE to the allergen. However, the immune system can also decide to produce IgG. Children with a classical atopic allergy have an immune system that is more sensitive in its immune reactivity (both IgE and IgG). This increased sensitivity possibly reflects a general problem in the mucosa or an enhanced immunological reactivity. Therefore it was suggested that IgG hyperactivity could be used as a surrogate marker of susceptibility to IgE hyperresponsiveness.

Next, the prevalences of sensitization and asthma in different populations were discussed as well as issues related to the diagnosis of allergy and asthma. Though diagnosing is not an aim in itself, it is relevant for giving a prognosis and has consequences for treatment. In children beyond the age of six, a diagnosis of asthma usually involves assessments of pulmonary function. For younger children, however, the equipment for assessing lung function is neither easily nor routinely used. Therefore, the diagnosis of asthma in pre-school children is primarily a clinical diagnosis based on the presence of symptoms (i.e. the presence of recurrent coughing and wheezing) and physical examination. However, for children under 5 without or with (a doctor’s diagnosis of) asthma, the most important reason for an encounter with their GPs is a period of coughing. Furthermore, in the majority of pre-school children these symptoms do not persist and not every child that wheezes or coughs has asthma or will eventually develop asthma. For a
GP, it is difficult to recognize in which children the symptoms will persist and will develop into asthma and which children will recover.

These observations gave rise to the three aims of our study. The first aim of the thesis was to determine whether or not an increased IgG antibody titre to foods is an indicator for an increased risk to develop an inhalation allergy in young, initially non-sensitized children, in a low-medium risk population. We considered three explanations for this association: 1) both reflect enhanced immunological activity, 2) there is an increased permeability to macromolecules and 3) there is immunological cross-reactivity between food antigens and inhalant allergens.

Furthermore, our study was aimed at the phase in life in which the production of IgE antibodies is induced. Therefore our second aim was to find risk and predictive factors for the development of sensitization in these young children, in general practice.

The third aim was to assess the predictive accuracy for asthma at the age of six of IgE tests to cat, dog and house dust mite in these children and to develop a diagnostic prediction rule for children presenting with complaints of coughing at the GP’s surgery.

To assess the first and second aim, a prospective study in general practice was designed in which the development of IgE antibodies in initially IgE negative children after two years of follow-up was studied. To assess the third aim, a sample of the IgE negative children and the IgE positive children were followed until their sixth birthday to determine their asthma-status.

Chapter 2

The subject of this chapter was the modified procedure we used to measure IgE. Allergen-specific IgE in the patient’s serum can be tested by using a RAST (radioallergosorbtent test). In general, serologic IgE testing is performed
by using serum, obtained by venepuncture. However, a venepuncture sometimes leads to objections from the parents and GPs. Therefore, for the present study, we investigated the possibility to measure total and specific IgE with capillary blood obtained by a finger prick, which was adsorbed on filter paper (blood spot procedure). A finger prick is easy to perform and can be done by the GP's medical assistant. Furthermore, we found that the filter paper with the blood sample can easily be sent in a plastic envelope to the laboratory. Because smaller amounts of blood, only three drops, are needed, the assays for measuring total serum IgE and specific IgE had to be adjusted. In this chapter, we showed that the results of our method compared well with those of a standard RAST. This convenient method for obtaining blood is a useful procedure in young children in daily practice.

Chapter 3 and 4

In these chapters, the first aim of the study was dealt with: we examined whether a relatively strong, but in itself not pathogenic immunological reaction to foods was more often found in children who develop an allergy for inhaled allergens at a later age. To measure whether a child's immune system is hyperresponsive, it is best to use a weak antigen to which everybody is exposed but to which not everybody reacts immunologically. IgG to foods was thought to be such an indicator.

In a cross-sectional study in the BOKAAL-population (chapter 3), we first investigated whether there was a relation at all between IgG to foods (i.e. mixture of wheat and rice, mixture of soy bean and peanut, egg white, cow's milk, meat, orange and potato) and IgE to cat, dog, house dust mite, egg and cow's milk (defined as atopy in this study). This study was performed in a subgroup of the BOKAAL-cohort: 120 atopic and 144 non-atopic one year old children. We found a strong relationship between atopy and IgG to foods (66-percentiles), especially for egg white (OR = 7.5, 95% CI = 4.2-13.4), orange (OR = 4.0, 95% CI = 2.3-6.8), mixture of wheat and
rice (OR = 4.8, 95% CI = 2.8-8.3), both in children with and without eczema in this cross-sectional study.

In the longitudinal follow-up study (presented in chapter 4), we examined 397 initially IgE negative children of whom 51 had become IgE positive for cat, dog and/or house dust mite during two years of follow-up. We confirmed that children with increased IgG antibody levels to foods (66-percentiles), especially orange (unadjusted OR = 2.0, 95% CI = 1.1-3.7) and mixture of wheat and rice (unadjusted OR = 2.2, 95% CI = 1.2-3.9), have a higher risk of developing IgE to inhalants.

The results of this study did not support cross-reactivity of foods with inhalant allergens as the main explanation for the association between IgG to foods and IgE to inhalants. It was suggested that this association is an expression of hyperreactivity of the immune system, either reacting sooner or slowing down less fast, or both.

Thus, an increased level of IgG to certain foods indicates that children have a higher risk of developing IgE to inhalants, and could be an indicator for risk evaluation: which children need to be watched. However, IgG as an indicator was not as good as we expected from earlier studies. Because of a low positive predictive value (16.5%) at a prevalence of 12.8% in this group, a low specificity (53.0%) and a low sensitivity (63.0%), IgG to foods is not useful in general clinical practice, but it may be useful as a screening test in epidemiological studies.

Chapter 5

In this chapter, we showed that in our study population of young coughing children, the frequency of sensitization to house dust mite, cat or dog at recruitment was 13% for the total group (1-4 years old), using a RAST cut-off value of 0.5 U/ml. Even in children younger than three years of age, distinct positive IgE levels to inhalants were found with a relatively high frequency
(11% sensitized). However, in general practice, 8-10 children would have to be tested to find one sensitized child. Therefore, we investigated whether there are profiles of clinical history associated with extreme (high or low) probabilities of allergic sensitization. If the diagnostic examination shows a low probability of sensitization, then a watchful waiting strategy may be considered. We developed a scoring formula for the prediction of sensitization, using the available data from the clinical history of 640 coughing children (13% sensitized). Five predictors obtained from the clinical history (age (3-4 years), infantile eczema, positive family history of mite-allergy, sibling(s) with pollen-allergy, and smoking by parents) contributed to distinguishing children who are at a high or a low risk of sensitization to house dust mite, cat, and dog. If none or one of these characteristics was present in the patient's profile, the probability of sensitization was less than 25%. If the GP only tests coughing children if the probability of being sensitized is at least 25% (an arbitrary cut-off), the RAST can be omitted in 80% of the one to four year old children. At what point a GP considers the probability high enough to test, depends on the degree of uncertainty and on the number of unnecessary tested children the GP is willing to accept. In this chapter, we provided practical information on probabilities of sensitization for different profiles in persistently coughing children that might support the GP in deciding whether or not to do a RAST. A negative RAST helps to exclude sensitization, whereas a positive RAST helps to establish the diagnosis. The question, which we cannot answer with our study, is when a probability is sufficient to base subsequent treatment activities upon.

Chapter 6

In this study, we tried to assess whether young initially IgE negative, who became sensitized to specific inhalation allergens, presented more frequently and with other allergy- and asthma-related symptoms to their GP than the children who remained IgE negative. In chapter 6, the results of a medical
record's review are presented. In this analysis, we wanted to investigate the association between the development of sensitization and asthma related symptoms in the initially IgE negative children by symptoms found in the medical records. This was studied among 162 IgE negative coughing children in our study of whom 27 (17%) had become IgE positive to common aero-allergens (house dust mite, cat and/or dog) during follow-up (30 months). Although the majority of the children visited their GPs for respiratory symptoms, the medical record's review showed that the sero-converted children had consulted the GP more frequently and with more specific respiratory symptoms (shortness of breath (52% IgE positives vs. 19% IgE negatives), wheezing (37% vs. 17%), allergic rhinitis or conjunctivitis (33% vs. 16%) and pneumonia (22% vs. 8%)) than the children who remained IgE negative. We found that sensitization was associated with a family history of atopy, breast-feeding, higher age, shortness of breath (>1 visit) and wheeze (>2 visits).

Subsequently, we found that sensitization to mite or dander allergens meant a three-fold higher risk of receiving a doctor's diagnosis of (allergic) asthma. In total 27.2% (44/162) of the children had been given a doctor's diagnosis of asthma after follow-up: 48% (13/27) of the sensitized children and 23% (31/135) of the children who remained IgE negative. Furthermore, we calculated the predictive values of allergy testing on a doctor's diagnosis of asthma for children with airway symptoms. The predictive value of being IgE positive (PPV) for wheezing children (>1 visit for wheeze) on asthma was 90.0% (9/10). For recurrent coughing (>6 visits) and shortness of breath, the PPVs were 73% and 71%, respectively. Thus, the results from the medical records' review indicate that it is possible to identify young children (<6 years) at high risk for becoming sensitized by their respiratory symptoms.
Chapter 7

In chapters 5 and 6, we focussed on the identification of allergic sensitization in young children presenting with coughing in general practice. In the study presented in chapter 7, we wanted to assess the predictive accuracy of sensitization to inhalant allergens for a diagnosis of asthma at the age of six for the children in our study. We defined asthma as a combination of airways symptoms and/or use of asthma-medication during the past twelve months and an impaired lung function (a positive bronchial histamine challenge, defined as \(PC_{20} < 8 \) mg/ml). To be able to measure the children's asthma-status, the IgE positive and a sample of the IgE negative children were followed-up until they were six years of age. We wanted to develop a scoring formula to be able to predict asthma at the age of six. Special attention was paid to the predictive accuracy of IgE tests in addition to the easier obtainable information from the clinical history. The idea was that a scoring formula could help us in an early diagnosis and in addition in starting early therapy.

Among 123 sensitized and non-sensitized young children, we evaluated the diagnostic value of patient history and the added value of allergy testing, according to the order in which data become available in general practice. This was done by constructing a multivariable diagnostic model without IgE testing and constructing the same model with the inclusion of the IgE variable. After considering patient characteristics and clinical history (predictors were age at inclusion, family history of pollen-allergy, and wheezing at inclusion), IgE testing improved the predictive accuracy, as indicated by an increase of the area under the curve (of the ROC curve) by 11% (P-value = 0.02). Furthermore, IgE testing improved patient discrimination as indicated by a change in the range of asthma probabilities from 6 to 75% pre-test to 1 to 95% post-test. For each patient profile, we calculated the probabilities of developing asthma before and after the IgE test, using the formula: probability = \(1/(1+e^{-\text{score}+\text{constant}}) \). By applying this formula, the GP can predict asthma in young children.
In this study, the absence of wheezing was important in the formula: children who did not wheeze had a less than 50% probability of developing asthma, even with a positive IgE test. For children who wheezed at inclusion, an allergy test was needed to discriminate between the children with and without asthma: the probability increased to more than 80% with a positive test, and was less than 50% after a negative test, depending on the child’s profile.

Thus, depending on the child’s profile, testing young children can help a GP in predicting whether a child has a high probability of becoming asthmatic. When according to the GP, this probability is sufficiently high, s/he can decide to start (pharmacological) treatment.

Chapter 8

In the Dutch guidelines for General Practitioners, allergy testing in children under four is not recommended, because a negative test does not rule out that a child will become positive in the future. In this chapter, we studied whether the children who had become sensitized after their fourth birthday (late sensitizers) had developed asthma at the age of 6 and whether they were at the same risk of developing asthma as the early sensitized children (<4 years). If the risk of developing asthma for the late sensitizers is equal to the risk of the early sensitizers, the recommendations in the guidelines are not supported. The results showed that 64% of the early sensitizers and 12% of the never sensitized children had developed asthma, whereas none of the late onset sensitizers had. The risk of becoming asthmatic at the age of six for these late onset sensitizers was similar to the risk of the never sensitizers, whereas the risk for the early onset sensitizers was significantly higher, even in strata of family history and infantile eczema.

Thus, sensitization to aero-allergens before the age of four is important in the development of asthma at the age of six. However, our findings should
be studied in a larger study, as the group of children becoming sensitized after their fourth birthday was small (5/96) in this study, furthermore these children might develop asthma at an older age in life.

Chapter 9

In chapter 9 some methodological issues on the studies described in this thesis were raised. We focussed on the definition of asthma in the medical record's study (chapter 6) and the study described in chapter 7, diagnostic studies, generalizability and the applicability of our study in practice, treatment paradox and finally, implications for further research.
Hoofdstuk 1

Atopische ziekten komen veel voor bij kinderen. We weten echter niet waarom sommige mensen allergisch worden en anderen niet. Ook weten we niet waarom de één allergisch wordt voor bijvoorbeeld kattenharen en de ander voor huisstofmijt. Wel is bekend dat erfelijkheid een belangrijke factor is. Ook omgevingsfactoren spelen een belangrijke rol, maar het is niet bekend op welke manier.

Hoofdstuk 1 geeft een beschrijving van de (immunologische) processen die een rol spelen bij allergie en astma. Het lichaam van een allergisch persoon reageert op stoffen (allergenen) waarvan niet-allergische personen geen last hebben. Een allergie gaat vaak gepaard met de productie van een speciaal type antistof, IgE, tegen het allergeen (=IgE-sensibilisatie). Maar ook andere antistoffen zoals IgG kunnen een rol spelen bij allergie. Kinderen met klassieke atopie hebben vaak een gevoelig immuunsysteem. Meting van IgG tegen antigenen waaraan iedereen wordt blootgesteld, maar waartegen niet iedereen IgE maakt (zoals voedingsmiddelen), zou kunnen worden gebruikt om te testen of een kind een gevoelig immuunsysteem heeft en IgE tegen inhalatie-allergenen gaat ontwikkelen. Drie mogelijke verklaringen voor de associatie tussen IgG tegen voedingsmiddelen en IgE tegen inhalatie-allergenen zijn: 1) beide geven verhoogde immunologische activiteit weer, 2) er is verhoogde permeabiliteit voor macromoleculen en 3) er is immunologische kruisreactiviteit tussen voedingsantigenen en inhalatie-allergenen.

In hoofdstuk 1 wordt geconcludeerd dat er geen algemeen geaccepteerde definitie van astma bij jonge kinderen (1-4 jaar) is. Ook is er geen test om astma te kunnen vaststellen bij deze jonge kinderen. Bij kinderen ouder dan 6 jaar wordt vaak een longfunctietest gedaan om astma te diagnosticeren. Bij jongere kinderen is dit meestal nog niet mogelijk. Daarom is de diagnose bij kinderen jonger dan 6 jaar vaak een klinische diagnose gebaseerd op de aanwezigheid van symptomen als hoesten en piepen, en een lichamelijk onderzoek.
Hoesten komt veel voor bij jonge kinderen. Voor kinderen onder de 4 jaar is het de klacht waarvoor de huisarts het meest wordt bezocht. Voor huisartsen is het moeilijk om tussen de jonge kinderen met hoestklachten die kinderen eruit te halen die een hoger risico op astma hebben. De meeste kinderen met hoesten als het enige symptoom ontwikkelen namelijk geen astma.

Dit proefschrift heeft drie doelstellingen. Het eerste doel is te bepalen of een verhoogde IgG-antistof-titer tegen voedingsmiddelen een indicator is voor een verhoogde kans op het ontwikkelen van een inhalatie-allergie bij jonge, aanvankelijk niet gesensibiliseerde kinderen, in een laag-medium risico populatie. Het tweede doel is het verkrijgen van inzicht in risico-factoren en voorspellers voor de ontwikkeling van sensibilisatie van jonge kinderen in de huisartsenpraktijk. De derde doelstelling is het vaststellen van de voorzpellende waarde voor astma op de leeftijd van 6 jaar aan de hand van IgE-testen tegen kat, hond en huisstofmijt op jongere leeftijd en het ontwikkelen van een diagnostische formule om astma te voorspellen bij kinderen met hoestklachten in de huisartsenpraktijk.

Voor de eerste twee doelstellingen is een prospectieve studie in de huisartsenpraktijk opgezet. Deze bestudeert de ontwikkeling van IgE-antistoffen bij jonge aanvankelijk IgE-negatieve kinderen na twee jaar follow-up. Voor de derde doelstelling is een deel van de IgE-negatieve kinderen en de IgE-positieve kinderen gevolgd tot hun zesde jaar. Op dat moment kan worden bepaald of ze astma hebben ontwikkeld.

Hoofdstuk 2

Het tweede hoofdstuk beschrijft de (ontwikkeling van de) aangepaste methode die we hebben gebruikt om IgE te meten. Allergeen-specifiek IgE in het serum van de patiënt kan worden bepaald door gebruik te maken van de RAST (radioallergosorbent test). Normaal gesproken wordt daarvoor serum
gebruikt dat wordt verkregen via venapunctie. In sommige gevallen is venapunctie echter niet zo geschikt en blijkt dit op bezwaren te stuiten van ouders en huisartsen. Daarom hebben wij in deze studie onderzocht of we totaal en allergen-specifiek IgE konden meten door capillair bloed te gebruiken dat wordt afgenomen met een vingerprikje. Dit bloed wordt vervolgens opgevangen op een filtreerpapiertje ("bloedspot"). Een vingerprikje is makkelijk uit te voeren en kan bijvoorbeeld worden gedaan door de assistente van de huisarts. De bloedspot op het filtreerpapiertje wordt vervolgens in een plastic envelop naar het laboratorium gestuurd.

Om met slechts drie druppels bloed voldoende gevoelige bepalingen te doen, zijn de standaardmethoden voor het meten van totaal serum IgE en specifiek IgE aangepast ("bloedspotprocedure"). Hoofdstuk 2 laat zien dat de resultaten van deze nieuwe methode goed overeenkomen met de standaard-RAST. Deze methode om bloed af te nemen en IgE te meten blijkt bruikbaar en gemakkelijk voor het testen van jonge kinderen in de huisartsenpraktijk.

Hoofdstuk 3 en 4

Deze hoofdstukken behandelen de eerste doelstelling van de studie. De vraag is of een relatief sterke (maar op zich zelf niet ziek-makende) immunoologische reactie tegen voedingsmiddelen vaker wordt gevonden bij kinderen die later een allergie voor inhaleerbare allergenen (allergenen van huisstofmijten en/of huisdieren) ontwikkelen.

Allereerst is in een cross-sectionele studie (hoofdstuk 3) onderzocht of er een relatie is tussen IgG tegen voedingsmiddelen en atopie. In deze studie is atopie gedefinieerd als de aanwezigheid van IgE tegen huisstofmijt, kat, hond, ei en koemelk. We hebben voor deze studie gegevens gebruikt van 120 atopische en 144 niet-atopische 1-jarige kinderen van het Bokaal-cohort (Bokaal staat voor: Borstvoeding en koemelk afwisselend: allergie?). Deze kinderen werden getest op de aanwezigheid van IgE-antistoffen tegen kat,
hond, huisstofmijt, ei en koemelk en op de aanwezigheid van IgG tegen voedselantigenen (sinaasappel, aardappel, eiwit, koemelk, mengsel van soja en pinda, varkensvlees en mengsel van tarwe en rijst).

We hebben een sterke relatie gevonden tussen atopie en de 66-percentielen van IgG tegen voedingsmiddelen, met name voor eiwit (OR = 7.5, 95% CI = 4.2-13.4), sinaasappel (OR = 4.0, 95% CI = 2.3-6.8) en tarwe-rijst mengsel (OR = 4.8, 95% CI = 2.8-8.3), zowel bij kinderen met als kinderen zonder eczeem.

In een longitudinale studie (hoofdstuk 4) hebben we vervolgens 397 aanvankelijk IgE-negatieve kinderen onderzocht. Deze kinderen waren bij de huisarts geweest met langdurig hoesten. Na twee jaar follow-up zijn 51 van deze IgE-negatieve kinderen IgE-positief geworden voor huisstofmijt, kat en/of hond. Zoals we ook in de cross-sectionele studie hebben gevonden, hebben ook in deze studie kinderen met verhoogde IgG-antistof waarden tegen voedingsmiddelen (66-percentiel), met name sinaasappel (ongecorrigeerde OR = 2.0, 95% CI = 1.1-3.7) en tarwe-rijst mengsel (ongecorrigeerde OR = 2.2, 95% CI = 1.2-3.9) een hoger risico op het ontwikkelen van IgE tegen inhalatie-allergenen dan IgE-negatieve kinderen.

In de inleiding van dit proefschrift hebben we drie verklaringen gegeven voor de relatie tussen IgG tegen voedingsmiddelen en IgE tegen inhalatie-allergenen. De resultaten van deze studie ondersteunen kruisreactiviteit van voedingsmiddelen met inhalatie-allergenen niet als de belangrijkste verklaring voor de associatie tussen IgG tegen voedingsmiddelen en IgE tegen inhalatie-allergenen. Het is aannemelijker dat deze associatie een uiting is van hyperreactiviteit van het immuunsysteem, dat hetzij sneller reageert, hetzij minder snel afgeremd wordt, hetzij beide.

Een verhoogd IgG tegen bepaalde voedingsmiddelen wijst er op dat kinderen een hoger risico hebben op het ontwikkelen van IgE tegen inhalatie-allergenen. IgG tegen voedingsmiddelen zou derhalve een indicator kunnen zijn voor risico- evaluatie: welke kinderen moeten in de gaten worden gehouden? IgG als indicator is echter niet zo goed als we hadden verwacht op grond van eerdere studies. Vanwege een lage positief voorspellende waarde
(16.5%) bij een prevalentie van 12.8% in deze groep en een lage specificiteit (53.0%) en een lage sensitiviteit (63.0%), is IgG tegen voedingsmiddelen niet erg bruikbaar in de dagelijkse klinische praktijk, maar kan bruikbaar zijn als screeningstest in epidemiologische studies.

Hoofdstuk 5

De frequentie van allerigeen-specifiek IgE tegen huisstofmijt, kat en hond in onze groep jonge hoestende kinderen bij inclusie was 13% voor de totale groep (1-4 jarigen) bij een RAST-grenswaarde van 0.5 U/ml. In de groep kinderen jonger dan 3 jaar was 11% gesensibiliseerd. Dit betekent voor de huisartsenpraktijk dat 8-10 kinderen moeten worden geprikt om 1 positief kind te vinden, als alle hoesters zouden worden geprikt. Daarom hebben we onderzocht of er karakteristieken zijn in de anamnese of demografische kenmerken die geassocieerd zijn met extreme (hoge of lage) kansen op allergische sensibilisatie bij kinderen. Als het diagnostisch onderzoek een lage kans op sensibilisatie geeft, dan kan de huisarts “afwachten”. Om de kans op sensibilisatie te voorspellen, hebben we een scoringsformule ontwikkeld, waarbij gebruik wordt gemaakt van de aanwezige informatie uit de anamnese van 640 hoestende kinderen (van wie 13% was gesensibiliseerd). In deze studie blijkt dat vijf voorspellers uit de anamnese en patiëntkenmerken bijdragen aan het onderscheid tussen kinderen met een hoog of een laag risico op sensibilisatie tegen huisstofmijt, kat en/of hond. Deze voorspellers zijn: leeftijd (3-4 jaar), aanwezigheid van eczeem/dauwworm, positieve familie-geschiedenis van mijt-allergie, broertjes/zusjes met pollenallergie en roken door de ouders. Als geen of één van deze kenmerken aanwezig is in het profiel van het kind, dan is de kans op sensibilisatie minder dan 25%. Als de huisarts alleen hoestende kinderen test als de kans op sensibilisatie minstens 25% is (wat een arbitraire grens is), dan hoeft 80% van de 1- tot 4-jarige kinderen geen allergietest te ondergaan (vergeleken
met wanneer alle hoestende kinderen zouden worden prikken). Het beslis-
moment waarbij de huisarts vindt dat de kans hoog genoeg is om te testen,
is afhankelijk van de onzekerheid en het aantal onnoodig geteste kinderen
dat de huisarts wil accepteren. In dit hoofdstuk hebben we praktische infor-
matie gegeven over kansen op sensibilisatie voor verschillende profielen
van langdurig hoestende kinderen om de huisarts te helpen bij de beslissing
om wel of niet een RAST te doen. Een negatieve RAST helpt om sensibilisa-
tie uit te sluiten, terwijl een positieve RAST kan helpen om de diagnose te
bevestigen. De vraag, die we in deze studie niet kunnen beantwoorden, is
wanneer een kans hoog genoeg is om vervolgens een behandelingsstrategie
op te baseren.

Hoofdstuk 6

In de studie beschreven in hoofdstuk 6 hebben we onderzocht of aanvan-
kelijk IgE-negatieve kinderen die IgE-positief zijn geworden, vaker bij de
huisarts zijn geweest en met andere allergische en astmatische symptomen
dan kinderen die IgE-negatief zijn gebleven. Dit hoofdstuk laat de resultaten
zien van een medisch dossieronderzoek. Met deze analyses hebben we het
verband onderzocht tussen de ontwikkeling van sensibilisatie en astma-
gerelateerde symptomen bij aanvankelijk IgE-negatieve kinderen. Dit is
bestudeerd onder 162 IgE-negatieve hoestende kinderen in onze studie, van
wie er 27 (17%) IgE-positief zijn geworden voor huisstofmijt, kat en/of hond
gedurende 30 maanden follow-up. De klachten en symptomen hebben we
uit de medische dossiers bij de huisarts gehaald. Hoewel de meerderheid
van de kinderen hun huisarts heeft bezocht voor luchtwegklachten, laat het
dossieronderzoek zien dat de serogeconverteerde kinderen de huisarts vaker
en met specifieke luchtwegklachten hebben geconsulteerd dan de kinde-
ren die IgE-negatief zijn gebleven. Tijdens follow-up kwam 52% van de IgE-
positieve kinderen voor kortademigheid bij de huisarts vergeleken met 19%
van de IgE-negatieve, 37% vergeleken met 17% voor piepen, 33% vergele-
ken met 16% voor allergische rhinitis of conjunctivitis en 22% vergeleken met 8% voor pneumonie. We hebben gevonden dat seroconversie is geassocieerd met een familiegeschiedenis van atopie, borstvoeding, oudere leeftijd, kortademigheid (>1 bezoek) en piepen (>2 bezoeken).

Ook hebben we gevonden dat kinderen die IgE-positief zijn geworden voor huisstofmijt-, kat- en/of hond-allergenen een drie keer zo hoge kans hebben op het krijgen van een dokters diagnose (allergisch) astma. In totaal heeft 27.2% (44/162) van de kinderen een dokters diagnose astma gekregen na follow-up: 48% (13/27) van de IgE-positieve kinderen en 23% (31/135) van de IgE-negatieve kinderen. Daarnaast hebben we voor kinderen met luchtwegsymptomen de voorspellende waarden berekend van een allergietest op het krijgen van een dokters diagnose astma. De positief voorspellende waarde voor "IgE-positief zijn" voor kinderen met symptomen van piepen (>1 consult voor piepen) op een diagnose astma is 90.0% (9/10). Voor recidiverend hoesten (>6 consulten) en kortademigheid zijn de positief voorspellende waarden respectievelijk 73% en 71%. De resultaten van het dossieronderzoek geven aan dat het mogelijk is om jonge kinderen (<6 jaar) met een hoog risico op sensibilisatie aan de hand van hun luchtwegsymptomen te identificeren.

Hoofdstuk 7

In de hoofdstukken 5 en 6 hebben we ons gericht op het bepalen van allergische sensibilisatie van jonge kinderen die met hoestklachten bij de huisarts komen. Het doel van de studie die in hoofdstuk 7 is beschreven is het vaststellen van de voorspellende waarde van sensibilisatie tegen inhalatieallergenen voor een astmadiagnose bij de 6-jarige kinderen in onze studie. We hebben een scoringsformule ontwikkeld om astma op 6-jarige leeftijd mee te kunnen voorspellen. Speciale aandacht hadden we hierbij voor de voorspellende waarde van IgE-testen naast andere makkelijker verkrijgbare
informatie uit de anamnese. Het idee is dat een scoringsformule ons kan helpen bij het stellen van een vroege diagnose en het effectief starten van vroege therapie. In dit hoofdstuk hebben we astma gedefinieerd als een combinatie van luchtwegklachten en/of astmamedicatiegebruik in de afgelopen 12 maanden en een positieve longfunctie (dat wil zeggen een positieve histaminetest, gedefinieerd als PC$_{20}$ < 8 mg/ml). We hebben alle IgE-positieve en een deel van de IgE-negatieve kinderen gevolgd tot hun zesde verjaardag. Op dat moment hebben we bepaald of de kinderen astma hebben.

Onder 123 IgE-positieve en IgE-negatieve kinderen hebben we de diagnostische waarde van de patiëntkenmerken en anamnese geëvalueerd en de toegevoegde waarde van een allergietest. Om de handelswijze van een huisarts te volgen hebben we eerst een (multivariabel) diagnostisch model gemaakt met demografische kenmerken en anamnese-variabelen. Daarna hebben we gekeken of een IgE-test iets toevoegt aan deze demografische kenmerken en anamnese. Het blijkt dat naast demografische kenmerken en anamnese (leeftijd bij inclusie, familiegeschiedenis van pollenallergie en piepen bij inclusie) IgE-testen de voorspellende waarde verbeteren. Dit is te zien aan het oppervlakte onder de Receiver Operating Characteristics-curve die stijgt met 11% (P-waarde = 0.02). De allergietest verbetert ook het onderscheid tussen kinderen met astma en kinderen zonder astma. Dit is te zien aan de verandering van het bereik van de kansen op astma van 6 tot 75% voor de allergietest tot 1 tot 95% na de allergietest.

Voor elk profiel hebben we de kans op het ontwikkelen van astma voor en na de allergietest berekend door gebruik te maken van de formule: kans = \(\frac{1}{1 + e^{-(\text{score} + \text{constante})}} \). Door deze formule toe te passen kan de huisarts astma bij jonge kinderen voorspellen.

De afwezigheid van piepen is belangrijk in de scoringsformule: kinderen die geen last hebben van piepen, hebben minder dan 50% kans op het ontwikkelen van astma, zelfs na een positieve allergietest. Voor kinderen die bij de inclusie wel piepen, is een allergietest nodig om onderscheid te maken tussen de kinderen met en de kinderen zonder astma: de kans op astma
stijgt naar meer dan 80% na een positieve test en is minder dan 50% na een negatieve test, afhankelijk van de andere kenmerken van het kind. Afhankelijk van het profiel van het kind kan het testen van jonge kinderen op allergie de huisarts helpen te voorspellen of een kind een hoge kans heeft om astma te ontwikkelen. Als de huisarts de kans hoog genoeg vindt, kan deze besluiten te starten met behandeling.

Hoofdstuk 8

In de huidige astmastandaard van het Nederlands Huisarts Genootschap (NHG) is geen plaats voor het testen op allergie bij kinderen onder de 4 jaar. Dit omdat een negatieve test niet uitsluit dat een kind positief wordt in de toekomst. In hoofdstuk 8 hebben we bekeken of kinderen die na hun vierde verjaardag gesensibiliseerd worden (de “late sensibiliseerders”) hetzelfde risico hebben om astma te ontwikkelen als de vroeg gesensibiliseerde kinderen die vóór hun vierde verjaardag allergisch zijn geworden. Als het risico op astma voor de op latere leeftijd gesensibiliseerde kinderen gelijk is aan het risico van de vroeg gesensibiliseerden, dan worden de aanbevelingen in de NHG-standaard niet ondersteund. De resultaten tonen aan dat 64% van de vroeg gesensibiliseerde en 12% van de nooit gesensibiliseerde kinderen astma hebben ontwikkeld, terwijl geen enkel laat gesensibiliseerd kind astma heeft ontwikkeld. Het risico op astma op 6-jarige leeftijd is voor de laat gesensibiliseerden gelijk aan het risico van de nooit gesensibiliseerde kinderen. Het risico voor de vroeg gesensibiliseerden is significant hoger, ook als we rekening houden met familiegeschiedenis en eczeem/dauwworm.

Sensibilisatie voor inhalatie-allergenen vóór de leeftijd van 4 jaar blijkt belangrijk te zijn voor het hebben van astma op 6-jarige leeftijd. Onze bevindingen moeten echter worden bestudeerd in een grotere studie omdat de groep kinderen die IgE-positief is geworden na hun vierde verjaardag in
deze studie heel klein is (5/96). Daarnaast is het mogelijk dat deze kinderen op een latere leeftijd astma ontwikkelen.

Hoofdstuk 9

Hoofdstuk 9 gaat ter afsluiting in op een aantal methodologische onderwerpen die in dit proefschrift aan de orde komen. In dit hoofdstuk vergelijken we de definitie van astma in de dossieronderzoekstudie (hoofdstuk 6) en de definitie van astma in de studie die beschreven is in hoofdstuk 7. Daarnaast besteden we aandacht aan enkele punten met betrekking tot diagnostische studies, generaliseerbaarheid en de toepasbaarheid van onze studie in de praktijk, de ‘behandelingsparadox’ en ten slotte de gevolgen voor verder onderzoek.