Amiodarone and thyroid hormone receptors
van Beeren, H.C.

Citation for published version (APA):
van Beeren, H. C. (2004). Amiodarone and thyroid hormone receptors

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
References

4. Drvota V, Carlsson B, Haggblad J, Sylven C. 1995 Amiodarone is a dose-dependent noncompetitive and competitive inhibitor of T3 binding to thyroid hormone receptor subtype beta 1, whereas disopyramide, lignocaine, propafenone, metoprolol, dl-sotalol, and verapamil have no inhibitory effect. J Cardiovasc Pharmacol 26:222-226
5. Bakker O, Van Beeren HC, Wiersinga WM. 1994 Desethylamiodarone is a noncompetitive inhibitor of the binding of thyroid hormone to the thyroid hormone beta 1-receptor protein. Endocrinology 134:1665-1670
8. Van Beeren HC, Bakker O, Wiersinga WM. 1995 Desethylamiodarone is a competitive inhibitor of the binding of thyroid hormone to the thyroid hormone alpha 1-receptor protein. Mol Cell Endocrinol 112:15-19
General discussion


24 Sun W, Sarma JS, Singh BN 1999 Electrophysiological effects of dronedarone (SR33589), a noniodinated benzofuran derivative, in the rabbit heart: comparison with amiodarone. Circulation 100:2276-2281

Genera1 discussion

26 Stoykov I, Heterogeneous expression of thyroid hormone receptor isoforms in the developing mouse heart. 2004 Abstract book Keystone Symposia Cardiac Development and Congenital Heart Disease

27 Harvey CB, Williams GR 2002 Mechanism of thyroid hormone action. Thyroid 12:441-446


31 Hudig F, Bakker O, Wiersinga WM 1998 Amiodarone decreases gene expression of low-density lipoprotein receptor at both the mRNA and the protein level. Metabolism 47:1052-1057


41 Schroeder-van der Elst JP, van der HD 1990 Thyroxine, 3,5,3'-triiodothyronine, and 3,3',5'-triiodothyronine concentrations in several tissues of the rat: effects of amiodarone and desethylamiodarone on thyroid hormone metabolism [corrected]. Endocrinology 127:1656-1664

42 Plomp TA, Wiersinga WM, Maes RA 1985 Tissue distribution of amiodarone and desethylamiodarone in rats after repeated oral administration of various amiodarone dosages. Arzneimittelforschung 35:1805-1810


55 Pennock GD, Raya TE, Bahl JJ, Goldman S, Morkin E 1992 Cardiac effects of 3,5-diodothyropropionic acid, a thyroid hormone analog with inotropic selectivity. J Pharmacol Exp Ther 263:163-169

56 Morkin E, Pennock GD, Spooner PH, Bahl JJ, Goldman S 2002 Clinical and experimental studies on the use of 3,5-diodothyropropionic acid, a thyroid hormone analogue, in heart failure. Thyroid 12:527-533


63 Tohillis DJ, Hamblin PS, Kolliniatis E, Lim CF, Stockigt JR 1988 Furosemide, fenofenac, diclofenac, mafenamic acid and meclofenamic acid inhibit specific T3 binding in isolated rat hepatic nuclei. J Endocrinol Invest 11:355-360