Rain falls on all of us (but some manage to get more wet than others): political context and electoral participation

van Egmond, M.H.

Citation for published version (APA):
van Egmond, M. H. (2003). Rain falls on all of us (but some manage to get more wet than others): political context and electoral participation.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
This chapter investigates the influence of a close election race on individual voters in Great Britain. While the previous chapter looked at the impact of closeness on turnout at the aggregate level, the focus of this and the following chapter is on the individual level. Chapter 3 argued that on theoretical grounds closeness is expected to be of influence in Britain, and Chapter 4 showed this to be true at the aggregate level. This chapter therefore need not prove that closeness is of influence in Great Britain. It will however analyze what individual-level effects produce these aggregate results, and in doing so demonstrate that the influence of closeness is not uniform at the individual level.

Suitable empirical data at the individual level are available for the national parliamentary elections during the period 1970 until 1997. Turnout figures for that period are presented in Table 5-1. As was the case for turnout figures presented for the Netherlands in Chapter 2, turnout rates show a decided amount of stability in Great Britain, although there is still a fair amount of variation, ranging from 71 to 78 percent.

Table 5-1 Great Britain - Turnout Figures in Parliamentary Elections, 1970-1997 (percentages)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnout</td>
<td>72.0</td>
<td>78.1</td>
<td>72.8</td>
<td>76.0</td>
<td>72.7</td>
<td>75.3</td>
<td>77.7</td>
<td>71.2</td>
</tr>
</tbody>
</table>

In the British party system, the Labour and the Conservative parties dominate and provide the only two viable parties for forming a government at the national level. However, since MP's are elected in local constituencies, the constituency level offers an additional arena for competition. The two parties leading the national race need not necessarily be the leading parties in the local constituencies. The interplay between races at the national and local (constituency) level will therefore be an important aspect of the analysis in this chapter.

5.1 Closeness of Elections in Britain

5.1.1 What is the Race?

First we need to determine what comprises the closeness of an election in Britain, in other words what the race is about. As mentioned in Chapter 4, the political consequences of finishing first in an election vary according to the make-up of the electoral system. It may be less consequential in a system where coalition government is necessary, as representation and

1 The political situation in Northern Ireland is so different from the situation in Great Britain that inclusion in the analytical model would not prove informative. The analyses in this chapter are therefore limited to Great Britain only. See Curtice (1994) for an overview on the history of British election studies.
participation in governing power is conceivable for the number two party - or for numbers 3 to 15, for that matter - as well as for the leading party, just as being the largest party does not guarantee the acquisition of government power\(^2\). The British system, with its first past the post system with single mandate constituencies and a long tradition of single party government leaves little room for questions about the 'prize' that is at stake. Moving into 10 Downing Street requires achieving a majority - plain and simple. There are no prizes for finishing second. Secondary race, such as the struggle of a small party to pass an electoral threshold, or a self declared minimum number of seats to be won in an election are not applicable to the British system\(^3\). It is gaining a majority that matters.

While the grand prize is national government, that prize is to be won through winning separate races at the level of the local constituencies. It is thus important to establish which of these two levels to focus on.

5.1.2 Double Vision?

Winning a majority of the seats in Westminster is vital in the British system - it is the way to acquire government power in a system that does not require coalition government. As the consequences of winning control in Westminster are far greater than winning any single constituency, it is to be expected that attention will gravitate to this national level, rather than the constituency level. The voters' direct influence, however, is restricted to the constituency level. Voters have no way of influencing the race beyond the borders of their constituency. This leads to a rival expectation, namely that closeness at the constituency level, and not the national level, is most influential on voter behavior. These two expectations are not, however, mutually exclusive. If the race is very close at the national level this may have a spillover effect on participation at the constituency level, enticing people to turn out and vote. If, however, the chances of one's preferred local candidate are effectively nil, then no matter how close the race is at the national level, one's choice for that candidate will only be a token influence. In a constituency where the gap between the leading parties is very large, or where the two leading parties do not correspond with the nationally leading parties, the potential influence of a close national race may be limited\(^4\). But whether in practice the influence of the national level will indeed be subordinate to the influence of the local constituency is a matter that hinges on another factor: information.

The initially trivial observation that voters can only be influenced by a close race when they know about the closeness of the race becomes less trivial when the information potency of the election at the national level and at the constituency level is considered. The most obvious way of obtaining information on the closeness of the race before the actual election is of course an opinion poll. Opinion polls held at the constituency level

\(^2\) As was the case for example following the 1977 elections in the Netherlands.

\(^3\) Although the Liberal Democrats' attempt to become the second party in the land in the 2001 election might arguably qualify as a secondary race.

\(^4\) This argument foregoes of course the possibility that people may have other reasons to decide on their vote, apart from electing their preferred party into government, such as electing the Member of Parliament that will be most effective in representing their local interests. Such motives would enhance the influence of the closeness of the race at the local constituency level.
that are actually available to the public tend to be very scarce\(^5\). Information on the
closeness of the race at the constituency level is thus limited, certainly when compared to the
information available at the national level, where opinion polls make up a substantial part of
news reporting in the mass media. In this way, voters are offered a lopsided information
package: abundant information on the national race, and only a limited amount on the local
race. Voters may then easily confuse or mix these two levels, or use information from one
level as a cue for the other. In this mix, the national level with its abundance of information
is prone to be dominant. Without wanting to do so, or even being aware of it, voters may act
on information from the national level, which may actually show little relation to the situation
in their own local constituency. Taking these considerations into account, it is not unthinkable
that the national level will dominate voters’ behavior, even though the electoral system in
Britain determines that voters can only exert influence in their local constituency. Because of
these considerations, both levels of competition will therefore be examined in our analyses in
the remainder of this chapter.

5.1.3 Who is Affected?
Contextual characteristics, though constant at the aggregate level to all voters within that
context, will not be equal at the individual level, as individual characteristics ‘shape’ the
personal context. A close race between Labour and the Conservatives will mean a close race
for supporters of those parties, but it will not mean the same thing - in effect, it may not have
any meaning at all - to staunch adherents of, say, Plaid Cymru. Hesitant voters of Labour or
the Conservatives may be affected by the context, but voters of Plaid Cymru will have to find
their motivation elsewhere.

Chapter 3 already argued that party preference and party evaluation play a crucial role
in determining who will be affected by a close election race, and in what way. Three
categories of voters were distinguished, each of which can be expected to show a specific
reaction to closeness. Voters with a strong preference for only one of the leading parties are
expected to be strongly affected by closeness. It is not clear what those who hold strong
positive feelings for both of the leading parties will do. People who have no preference
whatsoever for either of the leading parties, in effect respondents who expressed a dislike for
the leading parties, are not expected to be influenced by the closeness of the election. A
summary of the expected effects was given earlier in Table 3-1.

In the analyses that follows, the categories of voters will be indicated by the labels
introduced in Chapter 3: Convinced, Confounded and Condemned voters. To make the
distinction more explicit, the Convinced label was only applied to voters that combined
support of one of the leading parties with an expressed dislike of the other leading party. In
addition to these three categories of voters, a sizeable group exists that does not fit in these
categories. This remainder consists of voters who hold moderately positive feelings for both
leading parties, or a moderately positive feeling for one leading party, combined with a
positive or negative feeling for the other leading party. It is tempting to extend the alliteration
and call this category the ‘constant’ voters. However, this would be misleading as the term

5 Polls held at the constituency level may well be funded by local candidates or their organization, in which case it is
unlikely that this information will be freely available to the general public.

79
'constant' implies unaffected - which is not necessarily the case. Consequently, this segment of the electorate will be referred to as the Base category of voters. These Base category voters are still expected to be positively affected by the closeness of the election through across-the-board effects that a close election generates, for instance by way of increased media attention. Although this effect of closeness is expected to be smaller for Base category voters than for Convinced voters, it is expected to be more influential for Base category voters than for Condemned voters. To avoid incorrect associations, this group of voters will therefore not be labeled constant voters, but referred to with the somewhat technical label of Base-category voters.

As both the national and the constituency level will be taken into account, voters may be Convinced voters at the national level, but Condemned voters in their local constituency. In terms of the British party landscape, this could be the situation for a Tory supporter in a Scottish constituency where Labour and the SNP are the two leading parties. A Scottish nationalist in that same constituency would then be a Condemned voter nationally, but Convinced at the local level.

5.2 Analysis
The individual level data used for the analyses stem from the British Elections Studies (BES). These studies have been held from 1964, and preferably all of these would have been included in the analyses to provide as much context level variation as possible. Unfortunately, not all of these studies contain preference scores for all political parties, a prerequisite for our analyses. As a consequence, we can analyze only 8 parliamentary elections, held in the period 1970-1997.

To classify respondents in the Convinced, Confounded, Condemned or Base categories, an evaluation of all of the parties is required. The actual choice made at the election, the party voted for, is not suitable for this classification. A good party evaluation indicator would consist of a rating of the likelihood that the respondent will vote for each party in the political system, preferably measured on an interval scale. In this way, not only the likes, but also the dislikes of respondents, and the intensity of their preferences can be taken into account when classifying the respondents.

<table>
<thead>
<tr>
<th>Election</th>
<th>Convinced</th>
<th>Confounded</th>
<th>Condemned</th>
<th>Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>32.2</td>
<td>1.0</td>
<td>5.4</td>
<td>61.4</td>
</tr>
<tr>
<td>1974 Feb</td>
<td>28.5</td>
<td>2.8</td>
<td>2.5</td>
<td>66.2</td>
</tr>
<tr>
<td>1974 Oct</td>
<td>24.0</td>
<td>3.2</td>
<td>2.6</td>
<td>70.2</td>
</tr>
<tr>
<td>1979</td>
<td>26.5</td>
<td>5.4</td>
<td>1.7</td>
<td>66.4</td>
</tr>
<tr>
<td>1983</td>
<td>30.0</td>
<td>5.0</td>
<td>0.9</td>
<td>64.1</td>
</tr>
<tr>
<td>1987</td>
<td>24.2</td>
<td>0.1</td>
<td>4.0</td>
<td>71.7</td>
</tr>
<tr>
<td>1992</td>
<td>22.9</td>
<td>0.0</td>
<td>3.2</td>
<td>73.9</td>
</tr>
<tr>
<td>1997</td>
<td>33.9</td>
<td>0.6</td>
<td>5.6</td>
<td>59.9</td>
</tr>
</tbody>
</table>

6 Using the party actually voted for would of course be impossible where non-voters are concerned.
Based on party evaluation scores, dummy variables indicating the three categories of voters were constructed. Table 5-2 presents the distribution of the sample over the categories of voters at national level. Table 5-3 presents the same distribution, but at the constituency level. Rather than leaving election studies with poor operationalizations of the party preference indicators out of the analyses (notably, the 1983 elections), it seemed preferable to look at the outcomes for all elections, albeit with caution. This is further warranted by the fact that variation in the distribution of the Convinced, Confounded and Condemned voters ought to be a normal feature of a dynamic political landscape instigated for instance through changes in the degree of political polarization. Distinguishing this actual fluctuation from artifacts caused by questionnaire differences is not possible, given the limited information available. The irregular distribution pattern of the dummy indicators may, however, have an effect on estimates for in particular the Confounded and Condemned voters.

<table>
<thead>
<tr>
<th>Election</th>
<th>Convinced</th>
<th>Confounded</th>
<th>Condemned</th>
<th>Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>18.4</td>
<td>0.7</td>
<td>11.4</td>
<td>69.5</td>
</tr>
<tr>
<td>1974 Feb</td>
<td>25.0</td>
<td>2.4</td>
<td>17.3</td>
<td>55.3</td>
</tr>
<tr>
<td>1974 Oct</td>
<td>26.4</td>
<td>1.5</td>
<td>17.2</td>
<td>54.9</td>
</tr>
<tr>
<td>1979</td>
<td>25.5</td>
<td>2.8</td>
<td>16.2</td>
<td>55.5</td>
</tr>
<tr>
<td>1983</td>
<td>7.7</td>
<td>2.8</td>
<td>0.4</td>
<td>89.1</td>
</tr>
<tr>
<td>1987</td>
<td>7.6</td>
<td>0.1</td>
<td>1.1</td>
<td>91.2</td>
</tr>
<tr>
<td>1992</td>
<td>21.9</td>
<td>4.4</td>
<td>2.4</td>
<td>71.3</td>
</tr>
<tr>
<td>1997</td>
<td>25.5</td>
<td>3.1</td>
<td>11.7</td>
<td>59.7</td>
</tr>
</tbody>
</table>

As Tables 5-2 and 5-3 show the size of the Base category ranges from 60 to 91 percent for the constituency level, and from 60 to 73 percent of the respondents at national level. The very high number of 91 percent at the local level is for 1987, and is most almost certainly an artifact of the poor scale that was used in that election study.

The impact of closeness on electoral participation is of course greatly dependent on the actual degree of closeness, both at the national and constituency levels. As Chapter 4 already argued, closeness should not and need not be viewed as a dichotomous variable. In the analysis undertaken in this chapter closeness will therefore be treated as an interval variable that is expected to have a relationship with turnout as depicted in Figure 4-2.

Table 5-4 presents figures for closeness as predicted by opinion polls and as realized in the actual election, at the national level. An indicator of the closeness in constituencies is provided by the percentage of respondents (not of the whole electorate, see note 9 of this chapter) residing in constituencies where the gap between the leading parties was less than 5 percent. Turnout is presented in the last column of Table 5-4.

7 See the Appendix for details on the construction of the dummy variables.
8 The five percent figure is an arbitrary, but reasonable figure for what may be called a close election. It is presented here for ease of presentation, and will play no role in the actual empirical analyses. Note that interpreting the figures of Table 5-4 as representative indicators of the degree of closeness at constituency level for each election is hazardous because of variation in the (number of) constituencies selected.
If we look at closeness based on opinion poll data, the table shows three close elections in the period under study at the national level (the 1974 and 1992 elections). Three other elections (1979, 1983 and 1997) were certainly not close elections. Comparing the actual gap with the gap predicted by the polls, a striking six out of eight elections turn out to be closer than predicted. The correlation between predicted and actual closeness is a strong .78. For the elections that were predicted to be close, only the 1992 elections - which saw Major win an unexpected Tory victory - proved not at all close. The correlation between the predicted gap between the leading parties and turnout is -.68, while the correlation between the actual gap and turnout is considerably weaker at -.38.

Between 10 and 18 percent of the respondents reside in what may reasonably be called a close constituency, where the gap between the leading parties is less than 5 percent. The closeness at the constituency level can show a far greater variation than closeness at the national level: in constituencies where one single party (or candidate) dominates all others, the gap may well be over 50 percent. Table 4 in the Appendix presents an overview for each election of closeness at the constituency level9. However, in the analyses to follow the five percent mark will play no role, since closeness will be entered into the model as an interval variable.

5.2.1 The Model - Theory and Expectations

As Section 3.3.1 of Chapter 3 already discussed, to analyze a model containing individual and contextual level information, an analytical technique that takes these separate levels of information into account is required. Multi-level modeling is such a technique. The analyses in this and the following chapter are therefore carried out using MLwiN, a program that allows for multi-level modeling, including models for dichotomous dependent variables. The hierarchical data structure for the analysis is represented as follows. Individuals, the respondents of the election studies, make up the lowest level of analysis. The top level of analysis is formed by the constituencies in which the respondents reside. The middle level is made up of the election that is analyzed. The fact that not all constituencies have been included in all election studies is

9 Table 4 in the Appendix presents percentages for respondents, rather than constituencies. As not all constituencies have been sampled, descriptives of the actual dataset analyzed are presented rather than figures for Great Britain as a whole.
not a problem for the multi-level model. This data structure suggests that, over different national elections, the elections held in a single constituency have more in common than the elections in all constituencies for a single national election do\(^\text{10}\). The data structure acknowledges that individuals reside within constituencies, with different elections providing variation in the circumstances of the election.

The variables used at the individual level have been selected on the basis of existing research into individual electoral participation. Because of incompatibilities of the datasets used, only a limited number of individual level variables have been introduced in the model. Nevertheless, the most commonly used explanatory variables of electoral participation have been included. These are age, gender, education, political interest and income. All, with the exception of gender, have consistently shown a positive and significant relation with electoral participation. The influence of gender has not been consistent, and has been shown to differ dependent on country and additional variables included\(^\text{11}\). This variable will be entered into the analysis without any explicit expectations. Education has been transformed to improve comparability between studies, using a linear transformation\(^\text{12}\). The same procedure has been used for political interest, where the varying indicators included in each election study make standardization necessary\(^\text{13}\). For both the education and political interest indicators, the respondents' scores where subsequently transformed to deciles. This was done only to counter multicollinearity in the analyses. To standardize income, centralization around the mean value, followed by a log transformation was used. Prior to this transformation, missing values were replaced with the mean income value, while a dummy variable was created to distinguish respondents with missing values on income (cf. Chapter 2). All these transformations enable comparability.

At the aggregate level, the number of variables was kept to an absolute minimum, in view of the limited number of degrees of freedom at the national election level. As it is not the aim of this research to present the best explanation of electoral participation, but rather to demonstrate that closeness of the election interacts with individual level characteristics, only aggregate level information concerning the closeness of the election was included in the model. To account for the assumed non-linear character of this data (cf. Chapter 4, Figure 4-2) the indicator used for closeness of the election race is a transformation of the actual gap between the leading two parties, namely 1 divided by

\[^{10}\text{The latter model would require the top level of analysis to be elections, while constituencies would make up the middle level. Respondents (voters) remain at the lowest level.}\]

\[^{11}\text{See the discussion in Chapter 2.}\]

\[^{12}\text{Actually, a transformation was chosen where the education indicators available were regressed on a standardizing variable, in this case electoral participation, enabling maximum use of the information available. The predicted value of electoral participation for each case - in essence a linear transformation of all education indicators - was then taken as education indicator. This proved to be the most useful manner of increasing comparability among the different indicators of the various editions of the BES. Although this may appear to artificially inflate the explained variance in the subsequent analysis, this is actually not the case: in the original regression equation (yi = a + b*xi + ei) the predicted value yi ('y-hat') is determined by a + b*xi. In the subsequent analysis, yi takes the place of a + b*xi. The variance explained is determined by ei, which remains unaltered. Hence, the explained variance ('the R2') remains unaltered by the transformation. See van der Brug, van der Eijk and Franklin (2002), and van der Eijk and Franklin (1996, Chapter 20).}\]

\[^{13}\text{To keep information loss to a minimum, in this transformation missing values on any of the separate indicators were recoded to the lowest interest category, in effect treating missings as not politically interested.}\]
the gap in percentage points. The result of this transformation is a variable that attains higher values as the race is closer, which is therefore expected to be positively related to electoral participation 14.

In the ‘traditional’ way of modeling contextual influence, in which no distinction is made between voters, information regarding the closeness is added to the model through a single indicator for closeness. As argued above, such an analytical approach treats all voters as influenced by closeness equally. This ‘across-the-board’ effect of closeness will then be an amalgam - a weighted average, in a sense - of the various individual effects. In the analyses presented below, several terms (one for each category of voters, plus an interaction term for each category) are added to the model. As a result, the blanket effect is likely to diminish. It need not evaporate completely, as some of the influence of closeness may well be shared by the whole of the electorate.

The source of information regarding closeness would preferably be data from opinion polls that were conducted - or at least published - shortly before the election, as this would represent the information available to voters at the moment of the election. Such data is available at the national level. At the constituency level, however, such information is virtually impossible to obtain, to a large degree because such data was never gathered for a number of constituencies 15. This creates two problems, one practical and one theoretical. Both have been countered by assumption. The practical obstacle that this lack of information at the constituency level presents is that no data exists about the expected closeness of the election. As a proxy for this, actual election outcome data has been used, based on the assumption that people will have had some indication about the outcome of the election. The theoretical problem is that if no opinion poll data were available before the election, voters will not have had the opportunity to use such information to estimate the expected closeness of the race. We assume therefore that the actual outcome will generate leading cues in local press and radio from which voters will have some inkling of the closeness of the election in their constituency. To the degree that this assumption does not hold, and people are indeed unaware of the closeness in their local constituency, we cannot expect closeness at the constituency level to have any systematic impact on voters’ chance to participate.

The expected individual variation in the influence of closeness on voters is introduced into the model by the use of dummy indicators, distinguishing the three categories of voters and the Base category. The dummy variables are called Convincing, Confounded and Condemned, respectively, according to the conceptualization presented in Chapter 3. The effect of closeness on these voters - additional to the blanket effect - is introduced through the interaction between these dummy-indicators and the closeness of the election, dubbed Convinced*Closeness Interaction, Confounded*Closeness Interaction and Condemned*Closeness Interaction, respectively. It is important to realize that only the interaction terms take closeness into account. The dummy variables themselves indicate how a respondent relates to the parties that are in the race for the lead, not whether it is a close race for the lead.

14 Because the gap between the parties is the denominator, with a constant numerator of 1, the resulting transformation is non-linear.

15 Crewe (1997) reports 78 single constituency polls were held in 52 constituencies in the 1987 campaign, while in 1997 there were 29 polls published in the media, held in 26 constituencies.
The political landscape being what it is in Britain, a Convinced voter at the national level invariably indicates that the respondent is a supporter of either Labour or the Conservatives, disapproving of the Conservatives or Labour, as appropriate. At the constituency level, the range of leading parties is not limited to Labour and the Conservatives. A local Convinced voter could therefore back any of the three main national parties, as well as Plaid Cymru or the SNP, as long as they disapprove of the other leading party - whichever one that may be. As Chapter 3 argued, Convinced voters are likely to show a higher overall turnout rate independently of the closeness of the race, which will be indicated by a positive Convinced dummy effect, and they are also expected to be strongly and positively affected by the closeness of the race, which will be indicated by a positive parameter for Convinced*Closeness Interaction.

Confounded at the national level identifies voters who consider both Labour and the Conservatives as a viable option to vote for. Not surprisingly, the number of respondents in this category is rather small. Although there is no real logical reason for this, inspection of Table 5-3 reveals that Confounded voters are a rarity at the constituency level as well. As was argued in Chapter 3, Confounded voters may react to closeness in two possible ways. If these voters see their choice between two leading parties as an impossible predicament, their chance to participate is expected to be low (small Confounded estimate), and fall even with a close election (negative Confounded*Closeness Interaction parameter). Alternatively, if these respondents see no objection in voting against one of their favored parties, their behavior should resemble that of the Base category voters, which will result in statistically non-significant estimates. As statistical non-significance may to a large degree be the result of group size, rather than an actual non-existent effect, it is in this case important to look at the parameter estimate, as well as at statistical significance.

Condemned voters at the national level will be third party voters (e.g., SNP, Plaid Cymru, Liberal/Democrat etcetera) or respondents that object to all of the political parties. At the local level, Labour or Conservative supporters may also find themselves in constituencies where their party is not among the two largest, and thus find themselves to be Condemned voters as well. Condemned voters are not expected to be affected by the closeness of the race, although it may well be - especially at the constituency level - that they show a lower chance to participate in an election race in which they know their candidate will not win. The lower chance of participation will be reflected by negative parameter estimates for the Condemned voters indicator (since the blanket effect affects these voters as well), while the Condemned*Closeness Interaction term may be close to zero and/or not significant.

Whether it will make a difference that the local political arena resembles the national political arena, in other words whether, for instance, one is a Convinced national but Condemned local voter, or other possibilities, will be explored in section 5.2.4, where such cross-level interactions will be analyzed.

5.2.2 Outcomes - National Level
The first results are presented in Table 5-5. The interpretation of a multilevel model is largely comparable to that of a standard OLS regression or, in our case, the logistic regression model. For the models presented here, the difference with standard logistic regression results is the estimates of variation at the different levels of analysis. The estimates of variation at the different levels can be interpreted as the amount of variation that can be explained by the
grouping variables: in our analyses the constituency (level 3) and the election (level 2).

The second and third column present what may be called the ‘traditional’ model: the aggregate level effect of closeness is included as a single variable, thus of equal influence to all, although the model uses multi-level analysis. The last two columns present the integrated model, in which the influence of the context effect is dependent on individual characteristics. Estimates are unstandardized b-estimates; standard errors are presented in italics. Bold figures indicate statistical significance at the .05 level. Likelihood values, as well as the dichotomous R² value (Snijder & Bosker, 1999) are presented in the bottom row.

Table 5-5 Great Britain - Traditional Model vs. Individual Context Model (national level)

<table>
<thead>
<tr>
<th></th>
<th>‘Traditional’</th>
<th></th>
<th>‘Individual Context’</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>s.e.</td>
<td>B</td>
<td>s.e.</td>
</tr>
<tr>
<td>Age</td>
<td>0.014</td>
<td>0.001</td>
<td>0.013</td>
<td>0.001</td>
</tr>
<tr>
<td>Female</td>
<td>0.206</td>
<td>0.040</td>
<td>0.197</td>
<td>0.040</td>
</tr>
<tr>
<td>Education</td>
<td>0.071</td>
<td>0.008</td>
<td>0.074</td>
<td>0.008</td>
</tr>
<tr>
<td>Political Interest</td>
<td>0.245</td>
<td>0.008</td>
<td>0.232</td>
<td>0.008</td>
</tr>
<tr>
<td>Income</td>
<td>0.255</td>
<td>0.030</td>
<td>0.260</td>
<td>0.030</td>
</tr>
<tr>
<td>Income missing – dummy</td>
<td>-0.121</td>
<td>0.061</td>
<td>-0.112</td>
<td>0.061</td>
</tr>
<tr>
<td>National level:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closeness</td>
<td>0.231</td>
<td>0.035</td>
<td>0.212</td>
<td>0.038</td>
</tr>
<tr>
<td>Convinced voter</td>
<td>0.385</td>
<td></td>
<td>0.385</td>
<td>0.059</td>
</tr>
<tr>
<td>Confounded voter</td>
<td>-0.054</td>
<td></td>
<td>-0.054</td>
<td>0.183</td>
</tr>
<tr>
<td>Condemned voter</td>
<td>-0.495</td>
<td></td>
<td>-0.495</td>
<td>0.112</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.560</td>
<td>0.070</td>
<td>-0.544</td>
<td>0.071</td>
</tr>
<tr>
<td>Variation constituency (3rd level)</td>
<td>0.057</td>
<td>0.020</td>
<td>0.055</td>
<td>0.020</td>
</tr>
<tr>
<td>Variation election (2nd level)</td>
<td>0.061</td>
<td>0.028</td>
<td>0.064</td>
<td>0.028</td>
</tr>
<tr>
<td>Likelihood, R² detached</td>
<td>11753</td>
<td>.175</td>
<td>11229</td>
<td>.188</td>
</tr>
</tbody>
</table>

Standard errors in italics. Bold figures indicate statistical significance at p < .05.

The logistic transformation that is required because of the binary character of the dependent variable makes the interpretation of the parameters a little less straightforward than in OLS models. Put in simple terms, the effect of the independent variables on the dependent variable is contingent on the values of the other independent variables; the change in propensity to vote between men and women is different for, high and low levels of education, for example. Nevertheless, the effect will invariably be in the direction of the model estimates.

For the ‘traditional’ model all estimates for the individual characteristics, presented in the top part of Table 5-5 are statistically significant and show positive signs, with the exception of the dummy-variable that indicates a no-answer on the income question. The estimates indicate that the chance to vote increases with higher age, education, political interest and income, and that women have a greater propensity to vote than men, when controlling for these characteristics. The negative and significant estimate for the income-missing dummy variable indicates that those who refused indicate their income are actually
somewhat less likely to vote than those with an average income. With the exception of this last finding, the findings for individual characteristics are very much in line with results as generally found by individual level research into electoral participation.

The next estimate presented from the traditional model is for closeness of the election at the national level, as measured by opinion poll data. The transformation applied (1 divided by the opinion poll gap in percentage points) creates a variable that increases with closeness. The positive estimate is therefore in line with expectations. It is statistically significant and of substantial size.

The bottom pane of the table presents the variation explained by the constituency and election level, since the multi-level design takes the variation at these levels into account. The figures reported are small although significant, indicating that there is some between constituency and between-election variance left in the model. This is not unexpected, and neither is it of paramount interest for this research.

Based on this ‘traditional’ model, and leaving the very small level 2 and 3 variation aside for a moment, a female respondent of about average education, political interest and income, aged 45 would have a probability of voting of 86.8 percent in an election where the gap predicted by the opinion polls is 10 percent, as was actually the case in the 1979 elections. In the October elections of 1974, where the gap was 5 percent, the likelihood for such a voter to participate would, on the basis of this model, rise slightly to 87 percent. In the 1992 elections, which were predicted to be a dead heat at 0.5 percent - even though the pollsters were forced to eat their words later - such a voter would have a chance of 91 percent to turn out. Clearly, the model indicates that a close race makes a difference to voters.

Were this a ‘traditional’ individual level analysis, this would be all to report. Closeness indeed has a positive, statistically significant influence on electoral participation. The next two columns of Table 5-5 show, however, that there is more to closeness that just an across-the-board effect.

The last two columns of Table 5-5 show the ‘Individual Context’ model, i.e., the traditional model with indicators for Convinced, Confounded and Condemned voters added. This model acknowledges the fact that voters will be affected by their context in different ways. The dummy variables for the voter categories identify the influence of whether or not a respondents’ preference (or lack thereof) for the leading parties, while the interaction-terms indicate how this effect is increased or decreased as the race becomes closer or less close. The non-interacted closeness indicator is left to identify the influence of closeness on the Base category voters, to which the other categories of voters are set against.

The top pane of the table shows virtually no change from the ‘traditional’ model. The stability of the estimates for the individual characteristics is striking; differences are minimal. The dummy indicator for a missing income answer is now no longer statistically

16 For random effects, as variation at level 2 and level 3 is commonly referred to in multi-level modeling, an approximate Wald hypothesis test of the significance of this variation is more appropriate than looking at the parameter estimate/standard error ratio alone. This test is used when reporting statistical significance of the level 2 and level 3 variances.

17 The predicted value yi is defined as (EXP(ai + b*xi) / (1 + EXP(ai + b*xi))). For the example presented, the sum of coefficients (ai + b*xi) equals -.56 (constant) + 45*.014 (age) + 1* .206 (female) + 5* .071 (average education) + 5*.245 (average political interest) + 0*.255 (average income) +0*.121 (income not missing) +1*.231 (closeness = 1/10% gap between parties) = 1.8791. EXP(1.8791)/(EXP(1+1.8791))=.8675 (86.8%).
significant, however, indicating that, other variables taken into account, the propensity to vote of these respondents does not deviate from average income voters. The small decrease in the estimate for political interest can be explained by the relation between the indicators for Convinced, Confounded and Condemned voters and political interest. To qualify for one of the three voter categories, an opinion on the parties in the political system and thus some political interest is required. The very small change in the estimate suggests that this makes only a very small difference.

In the middle pane of the table, the estimate for the across-the-board effect of closeness is slightly smaller than in the traditional model. This should come as no surprise since the interaction terms that have been added reflect closeness at the individual level. Since a substantial part of the expected influence of closeness is mediated through these interaction terms, the aggregate effect is expected to decrease somewhat.

The estimates for Convinced voters show a very clear pattern. Convinced voters show a greater propensity to vote than the Base category, indicated by the positive and statistically significant estimate for Convinced voters. This high propensity to vote increases in close elections, as indicated by the positive and significant effect for the Convinced*Closeness Interaction. So not only do Convinced voters vote more often in close elections, they evidently vote more often in any election, even in those elections that are not close.

The pattern for Confounded voters is less straightforward. Here, neither the dummy estimate nor the interaction effect is statistically significant. Three alternative explanations can be considered for this. The relationship may genuinely not exist in the population, which means that Confounded voters show behavior that is not significantly different from Base category voters. Alternatively, some relationship may exist or more precisely, several relationships may exist: some of the Confounded voters may show an increased chance to turn out, while others may not be able to make a choice and stay home. These two contradicting patterns will produce an effect that cannot be distinguished, and will therefore not show statistical significance. Lastly, there may be a problem of sample distribution. As very few Confounded voters are included in the samples (see Table 5-3), the number of respondents may be too small to render the difference of their behavior with that of the Base category significant. On the basis of the data available, it is not possible to distinguish between these options.

The Condemned voters do behave according to expectation, in that Condemned*Closeness Interaction does not show a statistically significant effect. These respondents are thus not affected by the closeness of the election, at least not more so than Base category voters. This is in line with expectations, as the race is between parties that these respondents do not care about. In addition, these respondents show an overall lower propensity to vote, as indicated by the negative estimate for the Condemned dummy, which is statistically significant. Two things may cause this. Firstly, these voters realize that they do not stand a chance to see their favored party win the elections, and therefore they decide to stay home. Including information from the constituency level may shed light on this, as in some constituencies Condemned voters at the national level may still

18 The difference is small because the large majority of respondents belong to the Base category.
see their favored party win locally. Secondly, it may also indicate that within the group of Condemned voters, a substantial segment consists of people who do not care for any political party on offer. Without any party they appreciate, these respondents may show a high rate of abstention.

5.2.3 Outcomes - Constituency Level
Although the national level is what ultimately counts in British parliamentary elections to determine government, individual voters elect a representative for their local constituency, and in that sense the constituency is the limit and scope of their influence. As the local race may well see other parties in the lead than the national race, it is worthwhile examining whether British voters focus more on the local or on the national level when deciding whether to vote.

As mentioned, there are some handicaps for the constituency level to exert its influence. The predominance of the national level in the media has already been mentioned. This predominance is reflected in part by opinion polling: a dominant feature of national level news reports, but which are invariably rare at the constituency level. Information on the closeness of the local race will thus be scarcer and harder to come by for voters. It is not assumed here that such information will be completely unavailable to voters, as campaign efforts by local candidates and local news reports are likely to contain clues about the closeness of the election. Technically this means that such pre-election closeness information is also not available for this analysis. As a proxy, actual election outcome data is therefore used.

The estimates for the models including the constituency level are presented in Table 5-6, below. First the model for the constituency level is presented, next the constituency and national level combined. The constituency model with only closeness, and without dummy indicators or interaction terms is not presented, as virtually all parameter estimates remain unchanged compared to the first model presented in Table 5-6. Again, standard errors are given next to the parameter estimates in italics, while bold figures indicate statistical significance.
The top pane of the table once more shows the stability of the estimates for the individual characteristics in the model. None of the parameters show a substantial change in size or direction, when compared to the previous models. The estimate for closeness at the constituency level is extremely small, and not statistically significant. This indicates that, at the local level, no across-the-board effect of closeness exists, while such an effect does exist at the national level19.

The indicators for Convinced, Confounded or Condemned voters and the interaction terms now reflect the situation in the constituency of each respondent. A Convinced voter on the national level need not be a Convinced voter at the local level, and a close race at the national level need not be close at the constituency level, and vice versa.

There is one striking pattern when regarding the local voter categories and their interactions with closeness. The closeness of the race does not come out as a statistically

19 Excluding the dummy indicators from the model, as in the first model presented in Table 5-5, does not alter the parameter estimates for closeness. ut to cast a vote. Where specifically \textquotesingle voters\textquotesingle or \textquotesingle non-voters\textquotesingle is meant, this will be made clear in the text.
significant influence, neither as an across-the-board effect nor as interaction with any of the three indicators. Closeness does not appear to influence voters at the local level. This is reflected by the interaction terms that fail to come up statistically significant for any of the three categories. However, two of the three dummy indicators do prove statistically significant, with Convinced voters showing a greater chance of participation and Condemned voters showing a lower chance to participate, regardless of the closeness of the election. The estimates for Convinced and Condemned voters are thus comparable to the pattern at the national level, although Condemned voters tend to fall less ‘behind’ on the local level.

The pattern that emerges from this analysis is that at the local level, it is not closeness but location that matters. Location in this case indicating being in a constituency where a respondent’s favored party stands a chance of winning. The margin of that victory does not appear to matter. Possible explanations for this may be that the margin, i.e., the closeness of the race, is - contrary to what was assumed - not actually known to the electorate. Second, it may be that the margin is known, and is actually rather too well known, for instance, because it hardly fluctuated over the last number of elections held in the constituency. This may give voters the impression that no matter what, the outcome is certain, meaning that the effect of closeness on turnout will be negligible. Thirdly, it may be that it is not the constituency level, but the national level that dominates the minds of the voters.

The latter two columns of Table 5-6 certainly endorse the explanation that the national level dominates the local level. As indicators for the national level are added to the constituency level model, only the local Convinced voters estimate remains statistically significant. In addition, the estimates for the national level parameters are very close to the estimates for the model without constituency level data presented in Table 5-5. This clearly suggests that it is the national level that influences voters. One possible pitfall remains, however: cross-level interactions.

5.2.4 Cross-level Interactions

As mentioned earlier in this chapter, the categories of voters at national and constituency level need not coincide. A Convinced voter at the national level may well be a Confounded or Condemned voter in his or her constituency. If cues from both these levels are used in determining participation in the election, the effect of being a Convinced voter at the national level may be dependent on the category of voters the respondent belongs to at the constituency level. This means that the interaction between the national and constituency categories should be taken into account in the evaluation of which of these levels is most influential. As there are three categories at both levels, and all of the combinations can occur, nine possible interaction-terms exist\(^{20}\). Table 5-7 gives an overview of the possible interactions terms, and reports percentages of respondents of the total sample that belong to each of the categories.

\(^{20}\) The possible nine interactions excludes the ‘Base’ or fourth category.
Table 5-7: Great Britain - Possible National/Constituency-level Interactions, Percentages of Respondents in Total Sample

<table>
<thead>
<tr>
<th>Constituency</th>
<th>National</th>
<th>Convinced</th>
<th>Confounded</th>
<th>Condemned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convinced</td>
<td></td>
<td>I 12.7</td>
<td>III 0.5</td>
<td>IV 0.3</td>
</tr>
<tr>
<td>Confounded</td>
<td></td>
<td>0.5</td>
<td>0.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Condemned</td>
<td></td>
<td>II 3.2</td>
<td>0.0</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Roman numerals refer to interactions discussed in text.

On theoretical grounds, the combinations of voter categories presented in Table 5-7 can be divided into two categories. The combinations on the diagonal are not necessarily 'true' interactions, but may actually be simple additive effects. Convinced national level voters living in constituencies where they are also Convinced voters (denoted as interaction I in Table 5-7) find an incentive to vote at both the national level and the local level. These two incentives add up, but there is no direct theoretical argument as to why these two incentives would interact. The same holds true for the other diagonal combinations.

The off-diagonal combinations are expected to be 'true' interactions, in which the combination of the two categories at national and constituency level influences the actual behavior. Three examples will be discussed here. Convinced national level voters living in constituencies where they are Condemned voters (denoted as interaction II in Table 5-7) have no hope of electing a favored candidate in their constituency. As a consequence, they cannot help their favored party to national victory. For these voters, their participation can be no more than a token entry - they might as well stay home. This combination can therefore be regarded as a true interaction: Convinced national level voters should be positively influenced by the closeness of the election, but Condemned local voters should not. Whether one level dominates the other should become clear form the interaction effect.

The interactions III and IV present two other examples of theoretically interesting interaction effects. Interaction III concerns national level Confounded voters. For these voters, their constituency may function as a tiebreaker for the difficult choice between the two nationally leading parties. The combination should therefore function as a positive incentive to participate, when compared to other national level Confounded voters. Comparing to constituency level Confounded voters, the interaction III voters may be less likely to vote, because of the national level effect.

Interaction IV concerns national level Condemned voters, who are not expected to be affected by closeness, and constituency level Convinced voters, who are expected to be affected by closeness. Again, the interaction effect can inform us as to whether the national or the constituency level takes precedence, and how the behavior of the interaction IV voters compares to that of voters who share their national or constituency level category, but not the combination of the two.

The interactions may therefore offer us a number of benefits. Interactions may show how a group of voters in theoretically interesting circumstances responds. We may establish whether the national level or the constituency level takes precedence in conflicting situations. Moreover, by modeling interactions we may get a clearer view of the behavior of voters in more 'straightforward' circumstances, since the (hypothetically) distinctive behavior of interactions group voters is isolated.
Although theoretically the model should become more accurate with the introduction of interaction terms, Table 5-7 shows that in practice we can expect difficulties testing the model since most combinations only concern a small number of respondents. Six of the nine possible combinations involve less than one percent of all respondents. We are therefore unlikely to find any statistically significant results for these combinations, as empirical analyses (not presented here for the sake of brevity) confirm. Consequently, only two of the possible combinations are analyzed further and discussed here, namely those denoted by combinations I and II in Table 5-7.

<table>
<thead>
<tr>
<th>Constituency level:</th>
<th>No interactions</th>
<th>Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>s.e.</td>
</tr>
<tr>
<td>Closeness</td>
<td>0.002</td>
<td>0.005</td>
</tr>
<tr>
<td>Convinced voter</td>
<td>0.142</td>
<td>0.071</td>
</tr>
<tr>
<td>Convinced*Closeness Interaction</td>
<td>0.233</td>
<td>0.186</td>
</tr>
<tr>
<td>National level:</td>
<td>0.195</td>
<td>0.039</td>
</tr>
<tr>
<td>Closeness</td>
<td>0.317</td>
<td>0.067</td>
</tr>
<tr>
<td>Convinced voter</td>
<td>0.233</td>
<td>0.104</td>
</tr>
<tr>
<td>Convinced*Closeness Interaction</td>
<td>0.230</td>
<td>0.201</td>
</tr>
</tbody>
</table>

The introduction of cross-level interaction terms brings changes to some parts of the model, but not to the full model. Table 5-8 therefore presents only a condensed overview of the first interaction model. In this table, only the parameters affected are presented, so as to give a better insight into the impact of the interaction terms. For a complete presentation of the model, the reader is referred to Table 5 in the Appendix. To aid comparison, the estimates for the model without cross-level interactions, presented in Table 5-6, have been added to the table.

The results must be interpreted with caution, since only a few of the estimates show statistical significance. Bearing this in mind, the picture Table 5-8 seems to convey is that of an increased influence of the constituency level. Although the overall effect of closeness at the constituency level does not change, the estimates for Convinced voters and Convinced*Closeness Interaction at the local level do increase substantially. At the national

21 This does not necessarily imply that the interactions will only affect a small percentage of British voters, since the survey sample may not be representative of all British constituencies. A nationally representative sample need not be representative at the constituency level.
level, the estimates for closeness and the interaction with Convinced voters decrease in size, while the direct effect for Convinced voters at the national level increases. This suggests a shift of impact from the national to the constituency level, especially regarding the closeness of the race at the constituency level. This is underlined by the estimates for the cross-level interaction, at the bottom of the table. There too closeness at the constituency level shows a positive effect, while closeness at the national level shows a negative influence, as does the direct interaction effect. These last two findings may appear puzzling at first sight, as they run counter to expectations. It is necessary to understand, however, that to these parameters the estimates at constituency level as well as national level need to be added to come to the complete effect for this national level cross-level interaction term. The estimates and standard errors for the additional (interaction) effect of national closeness, 0.153 (0.128) and -0.274 (0.395) respectively, suggest however that an extra effect of closeness on top of the overall effect is absent for the cross-level interaction. This first cross-level interaction thus suggests that the model of Table 5-6 underestimates the importance of the constituency.

Table 5-9 Great Britain - National Level Convinced/Constituency Level Condemned Interaction (condensed table)

<table>
<thead>
<tr>
<th>Constituency level:</th>
<th>No interactions</th>
<th>Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closeness</td>
<td>0.002 0.005</td>
<td>0.002 0.004</td>
</tr>
<tr>
<td>Convinced voter</td>
<td>0.142 0.071</td>
<td>0.162 0.071</td>
</tr>
<tr>
<td>Convinced*Closeness Interaction</td>
<td>0.233 0.186</td>
<td>0.231 0.180</td>
</tr>
<tr>
<td>Condemned voter</td>
<td>-0.130 0.082</td>
<td>-0.216 0.094</td>
</tr>
<tr>
<td>Condemned*Closeness Interaction</td>
<td>0.027 0.077</td>
<td>0.020 0.059</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>National level:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Closeness</td>
<td>0.195 0.039</td>
<td>0.191 0.038</td>
</tr>
<tr>
<td>Convinced voter</td>
<td>0.317 0.067</td>
<td>0.262 0.070</td>
</tr>
<tr>
<td>Convinced*Closeness Interaction</td>
<td>0.233 0.104</td>
<td>0.282 0.107</td>
</tr>
<tr>
<td>Condemned voter</td>
<td>-0.435 0.119</td>
<td>-0.385 0.122</td>
</tr>
<tr>
<td>Condemned*Closeness Interaction</td>
<td>0.157 0.161</td>
<td>0.152 0.160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interaction: National Convinced * Constituency Condemned voters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction effect</td>
</tr>
<tr>
<td>Interception * Constituency closeness</td>
</tr>
<tr>
<td>Interaction * National closeness</td>
</tr>
</tbody>
</table>

Condensed table. Complete table presented in Table 5 of the Appendix. Standard errors in italics. Bold figures indicate statistical significance at p < .05. Actual election outcomes used for constituency level closeness, opinion poll data used for national level closeness.

Table 5-9 presents the estimates for the second cross-level interaction model. This interaction term denotes voters who stand a chance of winning at the national level but find themselves without any chance in their constituency. Again the table only presents the parameter estimates that are affected, and a complete overview is presented in the second part of Table 5-in the Appendix. The first two columns of Table 5-9 again present estimates from the non-interaction model of Table 5-6 for ease of comparison.

As in the previous interaction model, the results are not readily interpreted. Again, the
estimate for closeness at the constituency level remains stable. However, the estimates for Convinced and Condemned voters do change. The estimate for Condemned voters becomes even more negative. As the group of Condemned voters at constituency level now no longer includes national level Convinced voters - isolated by the interaction term - this is not surprising: the remaining Condemned voters have less to expect form the election and are less inclined to vote. Thus the slight increase in the estimate for Convinced voters cannot be explained.

At the national level, we see that Convinced voters now have a lower tendency to turn out at consistently higher rates. Instead they exhibit stronger responses to the degree of closeness. This is reflected in the table by a decrease in size of the Convinced voter estimate, while the accompanying interaction term increases in size. Apparently, the remaining Convinced voters at the national level are less stable voters that react more to the added incentive of a close race. Condemned voters at the national level do not change in their response to the closeness of the race, although they do fall less far behind the Base category voters in this cross-level interaction model - this is indicated by the decreased negative estimate.

In conclusion, the cross-level interaction models present a somewhat mixed outcome. On the one hand, the sample distribution suggested beforehand that any model findings would be problematic. Data analysis confirms this suspicion. At the same time however, the cross-level interactions do suggest that the influence of the constituency level may be underestimated if such interactions are excluded from the model.

5.3 Predicting Electoral Participation
What then does it matter whether one is a Convinced, Confounded or Condemned voter, or whether one can be classified as a Base category voter? To emphasize the impact of closeness on the different categories of voters, this section will depict the influence of closeness on the different categories graphically, for different degrees of closeness. First, the female mainstream voter presented earlier in Section 5.2.2 of 45 years of age, about average education, political interest and income (scores of 5, 5 and 0 respectively) is presented as a Base category voter, and also as a Convinced, Confounded and Condemned voter. The predicted chance to vote for such respondents is presented for different degrees of closeness of the election. These closeness figures are based on actual opinion poll predictions, published before the elections of 1983, 1979, October 1974, February 1974 and 1992, and with gaps between the two largest national parties of 19, 10, 5, 2 and 0.5 percent, respectively. Calculation of the predicted chance to vote is analogous to the calculations presented in Section 5.2.2 and note 17 above)

Figure 5-1 shows the propensity to vote for our respondent under different contextual circumstances. To aid transparency, the predictions are based on the national level model only, which is comparable to the model presented in Table 5-5 (last columns). However, the model used for the actual predictions had all estimates removed that were not statistically significant, since it cannot be claimed that these effects will exist in reality. Unfortunately, this may also mean that effects are removed from the model that show no statistical significance because of sample distribution and size reasons only, and not because these effects are in actuality absent. The amended prediction model is presented in Table 6-in the Appendix
The three lines in Figure 5-1 represent, from top to bottom, Convinced voters, Base category voters and Condemned voters. Confounded voters follow the same pattern as Base voters, since the estimates for Confounded voters proved not to be statistically significant. The left hand panel presents the likelihood of voting for our 45-year-old respondent under different degrees of closeness. Two things are clear right away: a Convinced voter has a consistently greater probability of voting than a comparable Base or Confounded voter, who in turn is more likely to vote than Condemned voters. In the model, this was reflected by the direct effects of the category indicators. Additionally, it is clear that the closeness of the election does affect the probability to vote, for all categories of voters. All three lines show an upward curve to the right, i.e., as the election becomes closer. In the estimation model, this is reflected by the significant and positive direct effect of Closeness, as well as the interaction of Closeness with the Convinced voters. But is this increased probability to vote uniform for the three categories?

The right hand panel of Figure 5-1 depicts this more clearly - although the picture requires some explanation. The right hand panel of Figure 5-1 shows the predicted probability of voting for the various categories, contrasted against the predicted chance to vote for Base category voters. The zero-line represents the predicted chance to vote for Base (and Confounded) category voters, while the top and bottom lines show the predicted deviation from that line for Convinced and Condemned voters, respectively. The upper line shows that Convinced voters have a probability to participate that is almost consistently 4 percent points higher than Base category voters, while this increases to a little over 5 percent points in extremely close elections. This is in line with expectations.

The lower line of the right hand panel of Figure 5-1 shows the probability to vote for Condemned voters. This probability is consistently lower than that of Base category voters, as was expected from the estimated model. However, the line also shows a curve upward at the extreme right hand side, indicating that as the election becomes extremely close, Condemned voters are more affected by this than Base category voters. This seems odd, even
counter-intuitive, as Condemned voter were expected to be least affected by the closeness of the election. However, this can be explained as a ceiling effect. As the election becomes extremely close, the chance to vote increases for all voters - but already high probabilities of voting have less scop to increase than lower probabilities. This explains the pattern of Figure 5-1, and it is a reflection of the s-curve which is typical for a logistic regression model. This effect will be shown to be even more pronounced in section 5.3.1. The reason that Convinced voters show an increase in the predicted probability to vote in close elections in Figure 5-1 as well is of course due to the additional, statistically significant interaction with closeness for Convinced voters.

5.3.1 High versus Low Involvement

Figure 5-2 depicts the effect of being a Convinced or Condemned voter vis-à-vis Base or Confounded category voters - now for high turnout potentials. Ceiling effects play an even greater role in these analyses. The predictions are once again based on the national level model presented in Table 6 of the Appendix. However, the simulated voter now has a higher probability to turn out and vote on the basis of her individual characteristics: predictions are made for a 50 year old female, of high education, high political interest and high income (scores of 8, 8 and 1, respectively)\(^\text{22}\). As Figure 5-2 clearly shows, for such a voter the contextual influence of closeness are minimal. The lines in the left hand panel of Figure 5-2 show only a minimal incline, while in the right hand panel the pattern of Figure 5-1 is repeated: Convinced voters are more likely to vote than Base category voters, and even more so as the election draws closer. Condemned voters catch up somewhat in close elections.

22 Education score of 8, political interest score of 8, income score of 1.
A different pattern can be detected at the other end of the scale, where voters are decidedly less inclined to participate. Figure 5-3 presents turnout predictions for a 20 year old male, of low education, low political interest and low income.

Figure 5-3 Great Britain - Predicted Chance to Vote for Different Categories of Voters with Low Involvement (left), and Deviation from Chance Predicted for Base Category Voters with Low Involvement (right).

![Closeness (Gap between the two largest parties in percent points)]

Figure 5-3 not only shows that it matters a great deal whether one is a Convinced, Condemned or Confounded or Base category voter at the low end of the scale. The plots also show that for these voters the political context - the closeness of the race - matters a great deal. For Convinced voters the probability to vote rises from under 50 percent to almost 70 percent in a dead heat election race. In other words, the chance to participate for Convinced voters is 10 percent in excess of the turnout likelihood for Base category voters and this increases to 20 percent. In contrast, Condemned voters are 20 to over 30 percent behind. The right hand panel also shows that these less involved Condemned voters fall even further behind as the election becomes very close.

5.4 Predicting Turnout Levels
The previous sections showed that closeness affects different voters differently, and that we should allow for individual variation in the influence of closeness on voters. In this section we will examine whether our ability to predict turnout at the aggregate level improves if we allow the influence of closeness to vary at the individual level. Does the Individual Context model provide more accurate turnout estimates than the ‘traditional’ model does?

The predictions are analogous to the predictions presented in Table 2-4 and Figure 2-1

23 Education score of 1, political interest score of 1, income score of -2.
in Section 2.5 of Chapter 2. We estimate the predicted turnout based on our analytical models, and for each election compare the turnout estimates with the actual turnout\(^\text{24}\). The basis for the predictions is the ‘traditional’ model presented in Table 5-5, and the prediction model (including statistically significant results only) already employed in the previous section and presented in Table 6-of the Appendix. The predictions will therefore be based on the national level model\(^\text{25}\).

Table 5-10 presents the turnout level as predicted by the ‘traditional’ model and the Individual Context model, followed by actual election turnout. The last column presents that average absolute deviation in predicted and actual turnout per model.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turnout</td>
<td>73.9</td>
<td>78.1</td>
<td>74.5</td>
<td>75.6</td>
<td>74.4</td>
<td>75.9</td>
<td>79.1</td>
<td>72.9</td>
<td>1.19</td>
</tr>
<tr>
<td>Individual Context</td>
<td>74.0</td>
<td>78.1</td>
<td>74.5</td>
<td>75.9</td>
<td>74.4</td>
<td>75.9</td>
<td>79.1</td>
<td>73.0</td>
<td>1.17</td>
</tr>
<tr>
<td>Deviance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An inspection of Table 5-10 shows that the differences in predicted turnout between the two models are small, in most cases only appearing in the second decimal. This should not surprise us - the amendments to the model are limited. No clear ‘winner’ can be determined, although the average deviation score shows a slightly more accurate prediction for the Individual Context model than for the ‘traditional’ model.

\(^{24}\) The prediction procedure requires the sample to be weighted, since voters are typically over-represented in election surveys (cf. Note 7, Chapter 2). Weighting ensures that sample turnout (as reported by the respondents) reflects the actual election turnout, enabling aggregate level predictions. Since sample weighting is problematic in the MLwiN software, the individual level predictions were produced in MLwiN, after which sample weighting and aggregate level predictions were performed in SPSS.

\(^{25}\) Additional analyses showed findings to be comparable for the national and constituency level models, and where therefore not presented here. For consistency the same model used in section 5.3 was presented.
Figure 5-4 presents the deviation of the predicted turnout rates from the actual election outcome. We see that the model tends to over-estimate the actual turnout. Figure 5-4 confirms the pattern of Table 5-10: differences in prediction accuracy are small between the two models. Only for the 1979 and 1987 elections does the Individual Context model provide markedly more accurate estimates.

5.5 Conclusions

Does closeness matter in Great Britain? Yes it does. The previous chapter already suggested this at the aggregate level, and the analyses in the current chapter show that indeed closeness affects turnout at the individual level as well. The figures in Section 5.3 illustrate this for the national level. But the aim of this chapter went further: to show that the impact of closeness is dependent on individual level characteristics. This too was confirmed by the analyses presented in this chapter. Graphically, this differentiation in the impact of closeness was depicted in the right hand pane of the figures of Section 5.3. The graphs showed that it matters whether one is a Convinced, Confounded or Condemned voter, and moreover, that this matters even more if one's individual characteristics make electoral participation less certain.

Although these findings do support the theoretical expectations set out in Chapter 3 and this chapter, there is still need for caution. The aggregate level turnout predictions of Section 5.4 showed only small differences, albeit in favor of the Individual Context model. In addition, a number of parameter estimates at the national and constituency levels, as well as for the cross-level interactions, were not to be statistically significant in contrast to prior expectations. Of course, this could mean that our expectations were wrong. However, as was already mentioned, the characteristics of the sample available for analysis meant that the
quality some of the variables used in this chapter was less than that desired. In addition, the number of respondents qualifying as Confounded or Condemned voters was extremely low: an unavoidable feature of standard survey sampling when segments of specific research interest in the population are small. Attaining enough respondents from these categories would require oversampling - or extremely large sample sizes. As a consequence, it is difficult to determine whether it is indeed these sample limitations that caused the estimates to remain statistically not significant, or whether the theory outlined is wrong. This proved to be especially problematic in the interpretation of the constituency level estimates, and the cross-level interactions.

Limitations of the sample distribution hamper conclusions which might be drawn regarding the constituency level as well. Whether the influence of the constituency level is fully overshadowed by the national level, as Table 5-6 suggests, is a question that for the moment must remain unanswered. However, some clues for an answer to this question were offered by the cross-level interaction analyses. Although only two of the possible nine cross-level interaction terms could be explored, indications were that the constituency level is of consequence. Or, to put it more accurately, voters are likely to focus on the arena that gives them the most favorable outlook - be it at the constituency or the national level.