W Hya: Molecular inventory by ISO-SWS

Published in:
Astronomy & Astrophysics

DOI:
10.1051/0004-6361:20031772

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

Download date: 24 Oct 2018
W Hya: Molecular inventory by ISO-SWS*

1 Stockholm Observatory, AlbaNova, Dept. of Astronomy, 106 91 Stockholm, Sweden
2 SRON-Utrecht, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands
3 University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
4 Kapteyn Institute, PO Box 800, 9700 AV Groningen, The Netherlands
5 SRON-Groningen, PO Box 800, 9700 AV Groningen, The Netherlands
6 Max-Planck Institut fuer extraterrestrische Physik, Giessenbachstrasse, 85740 Garching, Germany

Received 28 February 2003 / Accepted 16 December 2003

Abstract. Infrared spectroscopy is a powerful tool to probe the inventory of solid state and molecular species in circumstellar ejecta. Here we analyse the infrared spectrum of the Asymptotic Giant Branch star W Hya, obtained by the Short and Long Wavelength Spectrometers on board of the Infrared Satellite Observatory. These spectra show evidence for the presence of amorphous silicates, aluminum oxide, and magnesium-iron oxide grains. We have modelled the spectral energy distribution using laboratory-measured optical properties of these compounds and derive a total dust mass-loss rate of $3 \times 10^{-10} \, M_\odot \, yr^{-1}$. We find no satisfactory fit to the $13 \mu m$ dust emission feature and the identification of its carrier is still an open issue. We have also modelled the molecular absorption bands due to H$_2$O, OH, CO, CO$_2$, SiO, and SO$_2$ and estimated the excitation temperatures for different bands which range from 300 to 3000 K. It is clear that different molecules giving rise to these absorption bands originate from different gas layers. We present and analyse high-resolution Fabry-Perot spectra of the three CO$_2$ bands in the $15 \mu m$ region. In these data, the bands are resolved into individual Q-lines in emission, which allows the direct determination of the excitation temperature and column density of the emitting gas. This reveals the presence of a warm ($\simeq 450$ K) extended layer of CO$_2$, somewhere between the photosphere and the dust formation zone. The gas in this layer is cooler than the 1000 K CO$_2$ gas responsible for the low-resolution absorption bands at 4.25 and 15 μm. The rotational and vibrational excitation temperatures derived from the individual Q-branch lines of CO$_2$ are different (~ 450 K and 150 K, respectively) so that the CO$_2$ level population is not in LTE.

Key words. stars: circumstellar matter – stars: evolution – stars: individual: W Hya – stars: late-type – stars: mass-loss – infrared: stars

1. Introduction

One of the characteristics of Asymptotic Giant Branch (AGB) stars is their mass-loss. As a star evolves up the AGB, its mass-loss rate increases. Just before it evolves off to become a planetary nebula, it sheds most of its mass in a short time, i.e., superwind. Signatures of mass-loss can be studied in the infrared by tracing the dust (e.g., Bedijn 1987; Justtanont & Tielens 1992), and in the sub-millimetre by using molecular rotational lines such as CO (e.g., Knapp & Morris 1985; Groenewegen 1994; Skinner et al. 1999).

An example of an early AGB star is W Hya. It has a relatively low mass-loss rate as deduced from the weak CO millimeter observations (Wanni & Sahai 1986; Bujarrabal et al. 1989; Cernicharo et al. 1997). It is classified as a semiregular variable (SRa) from its light curve. The visual magnitude ranges from 6 to 10 over a period of 382 days (Lebzelter et al. 2000). It exhibits SiO (e.g., Schwartz et al. 1982; Clark et al. 1985), H$_2$O (e.g., Spencer et al. 1979; Lane et al. 1987) and OH main line masers (e.g., Szymczak et al. 1998; Chapman et al. 1994). It has a weak silicate dust emission at 10 μm along with a smaller emission feature at 13 μm. The carrier of the latter is still being debated. W Hya is one of the first AGB stars for which H$_2$O rotational emission was reported after the launch of the Infrared Space Observatory (ISO, Kessler et al. 1996). Neufeld et al. (1996) and Barlow et al. (1996) reported that these lines were detected in Short and Long Wavelength Spectrometers (SWS and LWS), respectively. Both authors presented models accounting for the emission. Recently, Zubko & Zuckerman (2000) also reported a model predicting H$_2$O line fluxes observed by ISO. Also, W Hya has been detected in the

Send offprint requests to: K. Justtanont, e-mail: kay@astro.su.se

* Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands and the UK) with the participation of ISAS and NASA.
2. Observations

Spectroscopic observations of W Hya were taken aboard ISO using both the SWS (de Graauw et al. 1996) and LWS (Clegg et al. 1996). The SWS data were taken using the standard AOT1 (full scan from 2.38–45.2 μm) speed 3, giving an average resolution of 510. We also obtained the spectrum using the full grating resolution of 2000 between 12–16 μm (AOT6) in order to study the CO2 bands. The data were reduced using the data reduction package provided by the SWS calibration team based at SRON-Groningen. We were able to observe the three CO2 bands using the SWS Fabry-Perot (FP) centering on the three Q-branches in order to resolve individual transitions. Care was taken to deglitch the spectrum due to cosmic ray hits on the detectors at the time of observation. As the data were taken in small wavelength intervals, each subband spectrum had to be stitched together. The final spectra were rebinned to a resolution of 4 × 10^4, with an oversampling of 6. Also the flux level for each wavelength band has been normalised to the AOT6 flux.

The LWS data were taken from the archive (PI: Barlow). The reduction was done using the ISAP data reduction package provided by IPAC.

3. Dust and gas mass-loss rates

In this section, we present a model fit to the infrared spectral energy distribution (SED) in order to derive the dust mass-loss rate. This is then used to calculate the rate of gas which is driven by the dust to the observed terminal velocity by momentum transfer between gas and dust. At the same time, the temperature structure of the circumstellar envelope is calculated. The main gas heating is by the dust drag while cooling is done through adiabatic expansion of the gas and radiative cooling via rotational molecular line emission. We also include vibrational cooling by H2 (Goldreich & Scoville 1976; Justtanont et al. 1994). Hence the dust and gas mass-loss rates are derived in a self-consistent manner. The issue of mass-loss rates is addressed here as there is a wide range of reported rates from 3 × 10^{-5} to 5.2 × 10^{-4} M_⊙ yr^{-1} (Wanner & Sahai 1986); see also Zubko & Elitzur (2000) for a recent reassessment of this controversy.

3.1. The dusty envelope

To derive the dust mass-loss rate, we have fitted the SED of W Hya using ISO SWS and LWS data, together with photometry from ground based observations (Wilson et al. 1972) and the IRAS point source fluxes. We adjusted the flux levels for the LWS spectrum to coincide with the IRAS 60 μm flux which also joins the SWS spectrum very well. There are broad features present in the LWS spectrum which are due to the internal reflection within the instrument at 54 and 110 μm. Here, we calculate the radiative transfer through the dust shell, using a code based on Haitsch (1979) which takes into account thermal emission and reemission and multiple scattering. It also allows for a grain size distribution which we assumed to be the same as the interstellar grain sizes (Mathis et al. 1977, hereafter MRN). We also employ multiple grain species.

The input parameters are listed in Table 1. The distance is taken from the Hipparcos catalogue (ESA 1997). From the study by Cami (2002), the emission features between 10–20 μm are a combination of amorphous silicates giving rise to the 10 μm emission, compact Al2O3 which gives a feature at 11 μm, spinel (MgAl2O4) is responsible for the 13 μm feature (Posch et al. 1999), and the 19 μm emission which is attributed to Mg3Fe5SiO12. In our attempt to fit these dust features, we used silicate dust properties employed by Justtanont & Tielens (1992). For other compounds, we extracted the optical constants from the University of Jena database and calculate the extinction coefficients using the Mie theory.

The fit to the SED for a three-dust component model is reasonably good for the complete SWS and LWS data coverage (Fig. 1). The fit is very satisfactory for all observed emission features, providing support for the presence of amorphous silicates, Al2O3 and MgFeO, except for the 13 μm feature. A model with spinel which produces a fit to the 13 μm emission feature predicts an additional feature at 16 μm, not seen in the observation (Fig. 2). Hence, while spinel provides a good fit to the 13 μm band, this identification is suspect. Further laboratory studies on related materials are required to test this suggestion. Onaka et al. (1989) suggested aluminum oxide as a carrier for the 13 μm dust emission and following that, Kozasa & Sogawa (1998) were able to explain the 13 μm feature using crystalline aluminum oxide core-silicate mantle grains. However, the optical constants used for aluminum oxide were coarse (1 μm spacing, Toon et al. 1976) and the interpolation of them close to the resonance could result in a misleading profile. A possible carrier proposed by Speck (2000) is SiO2 which has features at 9.5, 13 and 20 μm while Begemann et al. (1997) suggested a silicate-based material. For the moment, the issue of the dust species responsible for the observed 13 μm feature is still unresolved.

At a distance of 115 pc, we derive a total dust mass-loss rate of 3 × 10^{-10} M_⊙ yr^{-1} for the three species of silicates, Al2O3 and MgFeO, assuming a constant outflow velocity of 6 km s^{-1} (Bujarrabal et al. 1989). We note here that we assume that the dust and gas velocity is the same as the fitting of the SED allows us to derive M_d/M_dust. We will discuss the effect of the dust drift velocity in Sect. 3.2. Our input values are very similar to those used by Zubko & Elitzur (2000) but we derive a dust mass-loss rate which is lower by a factor of ten. We investigated whether this could be due to the difference in the dust properties used. Zubko & Elitzur used the silicate optical constants derived for AGN dust (Laor & Draine 1993), which has its infrared characteristics based upon astronomical silicates (Draine & Lee 1984). We have also analysed the observed spectra using dust parameters for the astronomical silicates and for Mg3Fe5SiO12 from the University of Jena database. The derived dust mass-loss rates which fit the observed strength of...
the 10 µm dust feature agree with our value. Hence the difference in the derived dust mass-loss rate is not due to the differences in the optical properties used. Rather, Zubko & Elitzur (2000) did not attempt to fit the observed 10 µm feature in detail, using only ground based-photometry and the ISO-LWS spectrum. We emphasize that the high mass-loss rate of Zubko & Elitzur (2000) gives too strong 10 and 20 µm silicate emission as shown in Fig. 2. We find that extending the calculation to include the dust envelope size observed by IRAS at 60 and 100 µm (Hawkins 1990) does not affect the far-IR flux as the density is far too low in the outer part to affect the SED. For our case, we fitted the silicate 10 µm feature and the other dust species (except for the 13 µm emission feature) which gives a more reliable mass-loss estimate as dust mass-loss rate is proportional to the strength of the 10 µm silicate feature. However, since we did not fit the 13 µm feature, our estimate of the mass-loss rate should be viewed as a lower limit, pending the correct identification of the feature.

If we assume that the elemental abundance of the outflow is that of the Sun, our estimated dust mass-loss rate for each dust component indicates that aluminum condenses out at a higher rate than the silicate, magnesium and iron: the latter three having abundances an order of magnitude higher than that of Al (Anders & Grevesse 1989). The amount of the silicate dust is the same as the aluminum dust while that of MgFeO dust is five times less (Table 1). Thermodynamic consideration of the dust condensation sequence starts with gas phase condensation of Al2O3, leading finally to Mg- and Fe-incorporation into silicate grains (Tielens 1990). Alternatively, Al and Si condense out at the same time but as Al has a high affinity for oxygen, aluminum oxide will be formed at a higher rate than silicate (Stencel et al. 1990) thereby giving rise to an 11 µm feature which is as strong as the silicate feature even though the abundance of Al is much lower than that of Si. In either case, the high fraction of Al in dust as compared to Si reflects a freeze-out of the condensation process well before all the
silicon has been consumed (e.g., well before magnesium-iron silicates condense out), W Hya is prototypical for a set of O-rich stars which have 10–20\% silicon has been consumed (e.g., well before magnesium-iron silicates condense out). W Hya is prototypical for a set of O-rich stars which have 10–20\% silicon has been consumed (e.g., well before magnesium-iron silicates condense out). W Hya is prototypical for a set of O-rich stars which have 10–20\% silicon has been consumed (e.g., well before magnesium-iron silicates condense out). W Hya is prototypical for a set of O-rich stars which have 10–20\% silicon has been consumed (e.g., well before magnesium-iron silicates condense out). W Hya is prototypical for a set of O-rich stars which have 10–20\% silicon has been consumed (e.g., well before magnesium-iron silicates condense out). W Hya is prototypical for a set of O-rich stars which have 10–20\% silicon has been consumed (e.g., well before magnesium-iron silicates condense out). W Hya is prototypical for a set of O-rich stars which have 10–20\% silicon has been consumed (e.g., well before magnesium-iron silicates condense out).

\[Q(\lambda, \rho) = \frac{1}{4\pi GM_\star} \int \sigma_d(a) L(\lambda) \, \rho(a,a') \, da \].

where \(\sigma_d \) is the geometric cross section of the dust, \(L(\lambda) \) is the luminosity at the wavelength \(\lambda \), \(\rho \) is the gas density (see Justtanont et al. 1994 for full details). We use radiation pressure for purely silicate dust in the calculation of the equation of motion. As a matter of fact, we find that the dust velocity is much greater than than of the gas due to the drift velocity in stars with such a low mass-loss rate.

\[u_{\text{drift}}^2(a) = \int \frac{Q(\lambda, \rho) L(\lambda) \, \rho}{M_c} \, da. \] (3)

The drift velocity is calculated for each grain size and then weighted by the size distribution of \(a^{-3.5} \). The ratio for the drift velocity for the largest and smallest grains (0.25–0.005 \(\mu m \)) is 8.1. In our calculation, the heating is dominated by the largest grains (heating \(\propto \rho^3 \)). This results in a high heating rate, therefore the calculated gas kinetic temperature is very high. In the fitting of the SED, we derived an \(M/M_d \) in which we can ignore the drift velocity. However, if we take the drift velocity into account when calculating the dust mass-loss rate and then solve for both the equations of motion and energy balance in a self-consistent way, we derive a mass-loss rate of \(1.5 \times 10^{-7} M_\odot \, \text{yr}^{-1} \) (Model 2) and the calculated CO line fluxes are higher than those observed for the low \(J \) transitions (see Table 2). From running a number of models with various different densities and temperatures, we find that the line flux ratio of the CO 2-1/1-0 is a sensitive measure of the assumed mass-loss rate while the temperature plays a minor role. For the observed ratio of 14.7, an upper limit for the mass-loss rate is \(8 \times 10^{-8} M_\odot \, \text{yr}^{-1} \) (Model 3, with the temperature derived from solving the energy balance equation). This model gives the best description of the observed line fluxes from low to higher transitions.

As a test, we calculated CO line fluxes using this mass-loss rate and a simple temperature law \(T \propto (r/r_\odot)^{-\alpha} \) where \(\alpha \) ranges from 0.5 to 0.8. The resulting line fluxes are insensitive to the change of temperature at this low mass-loss rate (\(\leq 10\% \)). This mass-loss rate is within a factor of two of our detailed calculation and puts a stringent upper limit on the mass-loss rate for W Hya. We also calculated the expected CO line fluxes using parameters from Zubko & Elitzur (2000), including their temperature structure. The calculated line fluxes are higher than those by Barlow et al. (1996), reflecting the higher mass-loss rate.

We calculate the peak main beam antenna temperatures for Model 1 to be 0.1 K for CO \(J = 1-0 \) observed with the

Table 1. Input parameters for modelling the dust and gas mass-loss rates in W Hya.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stellar mass</td>
<td>1 (M_\odot)</td>
</tr>
<tr>
<td>Stellar effective temperature</td>
<td>2500 K</td>
</tr>
<tr>
<td>Stellar radius</td>
<td>4 (\times 10^{11}) cm</td>
</tr>
<tr>
<td>Outflow velocity</td>
<td>6 km s(^{-1})</td>
</tr>
<tr>
<td>Distance</td>
<td>115 pc</td>
</tr>
<tr>
<td>Dust condensation radius</td>
<td>2 (\times 10^{4}) cm</td>
</tr>
<tr>
<td>Dust mass-loss rates</td>
<td>1.5 (\times 10^{-10}) (M_\odot) yr(^{-1}) – silicates</td>
</tr>
<tr>
<td>Dust mass-loss rates</td>
<td>1.3 (\times 10^{-10}) (M_\odot) yr(^{-1}) – Al(_2)O(_3)</td>
</tr>
<tr>
<td>Dust mass-loss rates</td>
<td>2.5 (\times 10^{-11}) (M_\odot) yr(^{-1}) – MgFeO</td>
</tr>
<tr>
<td>Gas mass-loss rate</td>
<td>8.7 (\times 10^{-3})</td>
</tr>
<tr>
<td>Dust-to-gas mass ratio</td>
<td>8 (\times 10^{-4})</td>
</tr>
</tbody>
</table>

Fig. 2. The plot of a close-up of the dust features. The long dashed line represent a model with Zubko & Elitzur (2000) parameters. The heavy solid line is the three dust model (Fig. 1) while the heavy dashed line is a model which includes spinel. The contribution from individual dust component is shown as dotted lines. From top to bottom: spinel, amorphous silicate, \(\text{Al}_2\text{O}_3 \), and \(\text{Mg}_0\text{Fe}_3\text{O}_5 \).
Table 2. A comparison of between the observed lines and those from the models using parameters by Barlow et al. (1996) and those derived in this paper. We list the available antenna temperatures (T_{mb}), line intensities (I) and line fluxes (F) from various sources.

<table>
<thead>
<tr>
<th>Transition</th>
<th>Observed</th>
<th>Barlow et al.</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{mb}(1–0)</td>
<td>0.3 K</td>
<td>4.7</td>
<td>0.06</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>I (1–0)</td>
<td>1.5a</td>
<td>55.0</td>
<td>0.8</td>
<td>4.6</td>
<td>1.57</td>
</tr>
<tr>
<td>T_{mb}(2–1)</td>
<td>2.3 K</td>
<td>20.9</td>
<td>0.7</td>
<td>5.7</td>
<td>1.9</td>
</tr>
<tr>
<td>I (2–1)</td>
<td>22.0a</td>
<td>229.6</td>
<td>7.5</td>
<td>51.4</td>
<td>19.3</td>
</tr>
<tr>
<td>F(16–15)</td>
<td>3.3E-20a</td>
<td>8.0E-20</td>
<td>1.6E-20</td>
<td>5.9E-20</td>
<td>2.9E-20</td>
</tr>
<tr>
<td>F(17–16)</td>
<td>2.3E-20a</td>
<td>8.6E-20</td>
<td>1.7E-20</td>
<td>6.2E-20</td>
<td>3.1E-20</td>
</tr>
</tbody>
</table>

a CO line intensity (K km s$^{-1}$) from Bujarrabal et al. (1989).
b CO line intensity (K km s$^{-1}$) Ceramicaro et al. (1997).
c ISO: Barlow et al. (1996) flux in W cm$^{-2}$.

IRAM telescope (cf. 0.3 K from Bujarrabal et al. 1989) and 0.7 K for $J = 2 - 1$ observed with a clear double-peaked profile (cf. a flat-top profile with a peak temperature of 2.3 K from Ceramicaro et al. 1997), with a canonical value of the CO abundance of 3×10^{-4}. Our calculated gas kinetic temperature, obtained from solving the energy balance, in the outer part of the shell is very high due to the large drift velocity, hence the populations of low-lying levels are excited to higher levels. This, coupled with a low density, results in very low antenna temperatures for $J = 1 - 0$ and $2 - 1$ lines. In order to reconcile these with the observations, we need to increase the mass-loss rate to $8 \times 10^{-8} M_\odot$ yr$^{-1}$ (Model 3). We also calculated expected line fluxes using input parameters from Barlow et al. (1996) and their temperature, and compared them to the IRAM results plus $J = 16 - 15$ and $J = 17 - 16$ in their ISO-LWS spectrum.

The results of these calculations are summarized in Table 2. Our model predicts line fluxes which are lower than the observed values, which is due to the low derived mass-loss rate for lower transitions while Barlow et al.’s parameters predict too high line fluxes by a factor of ten. However, we find that the high rotational lines are insensitive to the input mass-loss rate. The fact that there is a combination of different types of dust, not just silicates, may lead to different radiation pressures. A change in this parameter will affect the drift velocity and hence the heating rate and the gas kinetic temperature. Another factor which affects the CO line fluxes is the adopted turbulence velocity (Kemper et al. 2003). We assume a constant value of 1 km s$^{-1}$ in our calculation but in reality this could vary within the circumstellar envelope. An important issue which we touched upon in the previous section is the dust drift velocity. We calculated the drift velocity of ~ 15 km s$^{-1}$ for the averaged radiation pressure for the grains ((Q_{rad}, l) = 0.0057). However, the largest grains with a high drift velocity may no longer be momentum-coupled to the gas ($\rho_{\text{dust}} \sim 100$ km s$^{-1}$). Hence these grains will not partake in the heating of the gas, and hence the temperature structure of the envelope should be steeper. Further progress in this area has to await a more detailed radiative transfer calculation that includes a realistic model for the heating and cooling.

Our value of the gas mass-loss rate agrees within a factor of two to three with those from Wannier & Sahai (1986) and Olofsson et al. (2002) after scaling for the distance and velocity assumed here. However, our value falls short by an order of magnitude compared with that from Barlow et al. (1996) who calculated radiative transfer for H$_2$O lines in the LWS wavelength range and from Neufeld et al. (1996) who modelled H$_2$O lines from the SWS. The gas mass-loss rate derived recently by modelling H$_2$O emission lines of W Hya by Zubko & Elitzur (2000) is slightly higher than that from Barlow et al. (1996). In an attempt to reconcile these differences, we can say that our assumed CO abundance of 3×10^{-4} may be too high for this object. But we need to reduce this by a factor of 30 to bring the derived mass-loss rate in line with those from the water lines. However, the column density of the CO seen in absorption in SWS seems to contradict the very low abundance (Table 3). The abundance of water used in these calculations may be too low. By increasing the water abundance and lowering the mass-loss rate in those cases, or by increasing our mass-loss rate and lowering the CO abundance in our case, a convergence in mass-loss rate can be found between these approaches. Also, it is difficult to get the kinematic information from ISO LWS observations of H$_2$O lines because they are not resolved. Although SWAS and Odin observations of the 557 GHz line should be resolved, currently the signal-to-noise ratio is not good enough to be confident about the line profile.

In the future it will be possible to study water lines in more detail using the heterodyne instrument (HIFFI) aboard the Herschel Telescope due to be launched in 2007 which has a resolution of 1 km s$^{-1}$ or better. Equally important, the collisional cross sections between ortho- and para-H$_2$O and ortho- and para-H$_2$ for high temperature extending to high quantum numbers will be available as part of the study project in conjunction with HIFI.

In the case where the lines are subthermally excited, the input collisional rates have a strong influence in the calculation of radiative transfer.

4. Modelling absorption bands

The near-IR spectrum of W Hya shows several absorption bands due to various molecules, such as CO, H$_2$O. In order to see these bands clearly, we divided the spectrum by our fit to the SED and normalised it at 4 μm. We have modelled these absorption bands assuming thermodynamic equilibrium. The molecular data used are taken from Le Floch (1991) for the CO molecule, Schwenke (1998, private communication) for OH and H$_2$O molecules and Hitran (Rothman et al. 1998) for others. The absorption line profiles are convolved with a Voigt profile with the appropriate full width at half maximum for direct comparison with the observation (see Helmich 1996). From our SED fit to the spectrum, we can define the stellar continuum satisfactorily up to $J \lesssim 9$ μm. By fitting the observed continuum-divided spectrum with our models, we can derive an excitation temperature (T_e) for each molecule, along with the column density, N, assuming a Doppler parameter, b_D. In this paper, we try fitting the different molecular bands independently and derive the best set of parameters for each band. A more sophisticated approach has been made by Cami (2002) using a chi-square technique.
The column density for the band is high, 10^{21} cm$^{-2}$ also indicating that CO bands originate from a hot, dense region very close to the stellar photosphere. We believe that the gas is possibly excited by shocks since the effective temperature of the star is below the excitation temperature which gives rise to the observed $v = 8$–6 band. This is also consistent with the inferred Doppler width of 9 km s$^{-1}$ used to model the CO absorption band.

We also see the stretching modes of H$_2$O molecules at 3 μm. We modelled these bands assuming an ortho to para ratio of 3. We are able to reproduce the absorption band relatively well with a gas temperature of 1000 K for the H$_2$O stretching modes. However, the band is narrower than the observed one, especially in the red wing. The water band overlaps the OH ro-vibrational bands ($\Pi_{3/2}1 - \Pi_{1/2}0$ and $\Pi_{1/2}1 - \Pi_{1/2}0$) which cover from 2.9 to 4 μm. The highly excited lines of OH also indicate that they come from a warm region, close to the star where H$_2$O is probably photodissociated by shocks. We also modelled the CO$_2$ stretching mode at 4.25 μm. The band seems to come from the same region as the others. The width of the band is consistent with a gas of 1000 K.

The fit to the bending mode of H$_2$O at 6 μm is, however, not consistent with the observed data. In view of the various ratios of adjacent lines, we estimate that the excitation temperature is only 300 K for a column density of 5×10^{18} cm$^{-2}$. The observed absorption is much deeper than calculated in the blue wing where the CO fundamental band is present. The 4.6 μm CO R-branch blends with the CO$_2$ absorption wing while its P-branch blends with H$_2$O. At the resolution of the observations, individual absorption lines are not resolved. We roughly estimate the excitation temperature of the CO fundamental absorption to be \sim2000 K and put an upper limit for the column density of 10^{19} cm$^{-2}$. From very high resolution studies of CO lines in Mira variables (Hinkle et al. 1982), different bands come from different regions, with the fundamental band coming from a cool region while the overtone bands come from a hotter region, close to or from the pulsating photosphere. We can also fit the SiO band at 8 μm with a warm gas of 1000 K, possibly from the same layer as the H$_2$O stretching modes. This is consistent with emission coming from gas interior to the dust forming region where SiO is not bound in dust grains. There is evidence for the weak SO$_2$ absorption band at 7.3 μm. This band was discovered in a few O-rich AGB stars by Yamamura et al. (1999). We also see CO$_2$ ν_3 absorption band at 15 μm which we will discuss in more detail in the next section.

Although the overall fit to each band is good, there is still some residue which we are not currently able to account for. There is an absorption band just longward of the 4.25 μm CO$_2$ band. It is likely that the hotter component of water from the stretching modes contributes between 4.5–6 μm. We compared our results to that from Cami (2002; Table 6.2) and found that although our derived excitation temperatures agree within a factor of two, the column densities are very different (up to two magnitudes difference) in the cases of OH and SiO, while others agree reasonably well. This may lie in the fact that we adopt different Doppler broadening for different regions, i.e., the hotter region has a higher thermal broadening than the cooler one, while Cami (2002) assumed a constant velocity of 3 km s$^{-1}$.

Fig. 3. ISO SWS observation in band 1 (dotted line) compared with the model absorption of CO $\Delta v = 2$, H$_2$O stretching modes and OH absorption bands (solid line). Each absorption component is also depicted separately.

Fig. 4. ISO SWS observation in band 2 (dotted line) compared with the model absorption of CO$_2$, H$_2$O bending mode, SO$_2$ stretching mode and SiO $v = 1 - 0$ band (solid line). Each absorption component is individually shown.
and indicate the wavelength coverage.

Table 3. Parameters for the spectral absorption calculation. For each molecular band, we also indicate the wavelength coverage.

<table>
<thead>
<tr>
<th></th>
<th>(\lambda) ((\mu m))</th>
<th>(T_x) (K)</th>
<th>(N) (cm(^{-2}))</th>
<th>(b_0) (km s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO (\Delta v = 2)</td>
<td>2.3–2.6</td>
<td>3000</td>
<td>(1 \times 10^{21})</td>
<td>9</td>
</tr>
<tr>
<td>(\text{H}_2\text{O} , v_1 + v_3)</td>
<td>2.3–4.0</td>
<td>1000</td>
<td>(5 \times 10^{20})</td>
<td>7</td>
</tr>
<tr>
<td>OH</td>
<td>2.7–4.0</td>
<td>1500</td>
<td>(7 \times 10^{17})</td>
<td>8</td>
</tr>
<tr>
<td>(\text{CO}_2 , v_3)</td>
<td>4.0–4.6</td>
<td>1000</td>
<td>(8 \times 10^{17})</td>
<td>7</td>
</tr>
<tr>
<td>(\text{CO} , v = 1–0)</td>
<td>4.2–5.5</td>
<td>2000</td>
<td>(5 \times 10^{18})</td>
<td>8</td>
</tr>
<tr>
<td>(\text{H}_2\text{O} , v_2)</td>
<td>4.0–9.0</td>
<td>300</td>
<td>(5 \times 10^{18})</td>
<td>3</td>
</tr>
<tr>
<td>SO(_2)</td>
<td>7.1–7.7</td>
<td>500</td>
<td>(2 \times 10^{17})</td>
<td>3</td>
</tr>
<tr>
<td>(\text{SiO} , v = 1–0)</td>
<td>7.2–9.0</td>
<td>1000</td>
<td>(1 \times 10^{19})</td>
<td>7</td>
</tr>
<tr>
<td>(\text{CO}_2 , v_2)</td>
<td>14.8–15.0</td>
<td>1000</td>
<td>(1 \times 10^{17})</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 4. Line fluxes of rotational water lines detected in the ISO-SWS wavelength range.

<table>
<thead>
<tr>
<th>Wavelength ((\mu m))</th>
<th>Line flux (W cm(^{-2}))</th>
<th>Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.98</td>
<td>1.9E-18</td>
<td>(6_{04} - 5_{05}, 6_{06} - 5_{24})</td>
</tr>
<tr>
<td>35.45</td>
<td>5.3E-19</td>
<td>(5_{20} - 4_{05}, 7_{13} - 6_{24})</td>
</tr>
<tr>
<td>35.92</td>
<td>4.3E-19</td>
<td>(6_{02} - 5_{24}, 6_{03} - 5_{24})</td>
</tr>
<tr>
<td>39.35</td>
<td>5.6E-18</td>
<td>(5_{08} - 4_{22}, 5_{35} - 4_{40}, 6_{22} - 5_{33})</td>
</tr>
<tr>
<td>40.31</td>
<td>4.8E-19</td>
<td>(6_{04} - 5_{24})</td>
</tr>
<tr>
<td>40.71</td>
<td>1.4E-18</td>
<td>(4_{32} - 3_{03}, 6_{33} - 5_{24})</td>
</tr>
<tr>
<td>43.91</td>
<td>6.6E-19</td>
<td>(5_{11} - 4_{32})</td>
</tr>
<tr>
<td>44.14</td>
<td>6.1E-19</td>
<td>(5_{32} - 4_{33})</td>
</tr>
<tr>
<td>44.68</td>
<td>4.4E-19</td>
<td>(8_{26} - 7_{28})</td>
</tr>
<tr>
<td>45.10</td>
<td>6.8E-19</td>
<td>(5_{22} - 4_{34})</td>
</tr>
</tbody>
</table>

throughout. As it turns out, different combinations of column density and Doppler width can give similar resulting absorption. The depth of the absorption is very sensitive to the adopted Doppler velocity used, more so than the column density.

5. Molecular emission lines

Both Barlow et al. (1996) and Neufeld et al. (1996) reported emission due to \(\text{H}_2\text{O} \) rotational lines from LWS and SWS FP mode observations, respectively. From the full SWS scans, we detected 10 more \(\text{H}_2\text{O} \) rotational lines in the region between 30–45 \(\mu m \). We estimated the line fluxes by assuming a Gaussian profile and these are reported in Table 4. Some lines are a blend of the ortho- and para-water as the wavelengths of their transitions are too close to be resolved by the SWS scan. Barlow et al. (1996) also noted some CO lines present in their LWS spectrum. Surprisingly, only two CO lines have been detected in LWS \((J = 16 - 15 \) and \(J = 17 - 16 \), see Sect. 3). In this section, we will limit our discussion mainly to new results on CO\(_2\).

5.1. The SWS grating spectrum of CO\(_2\)

We detected CO\(_2\) in W Hya between 13-16 \(\mu m \) from the full scan SWS AOT1. We see these CO\(_2\) bands in all of the stars which exhibit the so called 13 \(\mu m \) dust feature in our guaranteed time program (PI. de Jong). From this we proposed that objects with the 13 \(\mu m \) dust have CO\(_2\) associated with it (see Justtanont et al. 1998, Fig. 1). On this basis, we obtained further observing time to scan objects with this dust feature at the highest grating resolution (AOT6). All the objects observed in the supplementary program confirm our idea, i.e., all stars with the 13 \(\mu m \) dust show CO\(_2\) bands. However, the reverse is not always the case, e.g., one of the stars in our program, \(\alpha \) Ceti, has no 13 \(\mu m \) dust but shows CO\(_2\) emission and IRC+10011 also shows CO\(_2\) while the 10 \(\mu m \) silicate is self-absorbed (Markwick & Millar 2000). Cami et al. (2000) show a detailed calculation of CO\(_2\) emission bands in EP Aqr, one of the stars in our program. If the association between the 13 \(\mu m \) dust feature and CO\(_2\) gas is real then CO\(_2\) is very prevalent because Sloan et al. (1996) argue that up to 50% of O-rich semiregular variables show such a dust feature. The formation of CO\(_2\) is thought to be via CO+OH (Nercessian et al. 1989; Willacy & Millar 1997) where OH is the product of either photodissociation or of shock destruction of \(\text{H}_2\text{O} \) molecules.

In W Hya, the transitions 10\(^0\) \(-\) 01\(^0\) at 13.87 \(\mu m \) and 02\(^0\) \(-\) 01\(^0\) at 16.18 \(\mu m \) are in emission while 01\(^1\) \(-\) 00\(^0\) at 14.97 \(\mu m \) is in absorption. We modelled the absorption band which is shifted from the normal position as seen in emission in other stars. We attribute this shift towards a shorter wavelength to the importance of highly excited bands. To excite these bands (e.g., 02\(^2\) \(-\) 01\(^1\), 03\(^3\) \(-\) 02\(^2\), 04\(^4\) \(-\) 03\(^3\)), we need the gas temperature to be ~1000 K (Fig. 5). These bands have their Q-branches at successively shorter wavelengths than the 01\(^1\) \(-\) 00\(^0\) band. By including these bands in our calculation, we are able to match the peak absorption at 14.957 \(\mu m \) as observed. One thing to note from our observations of objects with CO\(_2\) is that only stars with the 14.97 \(\mu m \) absorption show the corresponding 4.25 \(\mu m \) absorption. Those which show the 14.97 \(\mu m \) in emission lack the stretching mode counterpart (for the full sample, see Cami 2002). This probably indicates...
that the radiative pumping by the 4.25 \(\mu m \) band plays a very minor role, if at all, in populating the levels which result in the 13–16 \(\mu m \) emission.

5.2. The Fabry-Perot observation of CO\(_2\) bands

We subsequently obtained high resolution spectra of these CO\(_2\) bands using the SWS-FP which resolved the individual Q branches (Fig. 6). The small dip at 13.877 \(\mu m \) in the band 10\(^{00}\)0–01\(^{10}\) in this figure is an instrumental effect due to the end of the scan of FP wavelength setting. The resolved Q-lines are listed in Table 5 where the wavelength, the energy of the upper level, the measured line flux and the identification are given. The flux errors given represent the estimated uncertainties in the continuum and do not take into account possible calibration errors so that they should be taken as lower limits.

It is quite remarkable though that we can discern emission of the Q-branch lines in the depth of the 14.97 \(\mu m \) band while the absorption blends into a single band. As discussed in Sect. 5.1, this absorption is formed in a hot (1000 K) gas layer in the outer photosphere and lines may be smeared out by turbulence \((b_D = 7 \text{ km s}^{-1}, \text{ see Table 3}) \) and/or optical depth effects. The first of the individual Q-line to be resolved in emission is Q10. The close spacing between Q2–Q8 means that even at this resolution we cannot separate them from each other. We conclude that the emission lines are produced in a gas layer which is more extended and lying farther out in the circumstellar shell than the hot layer which is responsible for the absorption band at 14.95–14.98 \(\mu m \), in line with earlier suggestions by Justtanont et al. (1998) and Cami et al. (2000).

We have Fabry-Perot observations of individual Q-branch lines for three bands of CO\(_2\) (see Fig. 6). In the fundamental
band we detected lines up to Q42 and in the other bands up to Q24. We can use the observed flux of the individual line in each band to construct a rotation diagram from which we can derive a rotational excitation temperature \(T_{\text{rot}} \) characterizing the population distribution within the upper vibrational level of each band, using the relation

\[
E_j / k T_{\text{rot}} = \ln(N_v / \Phi(T_{\text{rot}}) d^2) - \ln(4 \pi F_j / A_{ji} h \nu_j g_j) = \ln(N_v / \Phi(T_{\text{rot}}) d^2) - Y_j
\]

where \(E_j \) and \(g_j \) are the energy and statistical weight of the upper state, \(F_j \) and \(\nu_j \) are the line flux and frequency of the transition, \(A_{ji} \) is the spontaneous transition probability, \(N_v \) is the total number of molecules in the upper vibrational level \(v \), \(\Phi(T_{\text{rot}}) \) is the partition function, and \(d \) is the distance to W Hya. Figure 7 shows the rotation diagram of all the resolved Q-lines. There is considerable scatter in the data points due to uncertainties in the calibration (e.g., joining of different pieces of the spectrum within each band) and in the continuum. The offset between the data points in the 01\(^{1}\)0 level and in the 02\(^{0}\)0 and 10\(^{0}\)0 levels is due to differences in the number of molecules in these levels.

In Table 6, we collect a number of quantities derived from the fits in Fig. 7. The derived rotation temperatures are 435 K for the 01\(^{1}\)0 level and 460 K for the other two levels combined. The partition functions for each vibrational level are computed assuming that the levels are populated in thermal equilibrium at the rotational temperature. The quantities \(Y_0 \) are the intercepts of the fits in Fig. 7 at \(E_j = 0 \). Putting \(E_j = 0 \) and \(Y_j = Y_0 \) in Eq. (3) we derive values of \(N_v \), the total number of molecules in each vibrational level, listed in Col. 5 of Table 6. These numbers are a lower limit as we assumed that the lines are optically thin.

From these, we then find the vibrational excitation temperatures \(T_{\text{vib}} \) (10\(^{0}\)0 - 01\(^{1}\)0) = 150 K and \(T_{\text{vib}} \) (02\(^{0}\)0 - 01\(^{1}\)0) = 170 K, using the relation \(T_{\text{vib}} = 1.44 E_{ji} / \ln(N_v / N_i) \) with \(E(10\(^{0}\)0 - 01\(^{1}\)0) = 720 cm\(^{-1}\) and \(E(02\(^{0}\)0 - 01\(^{1}\)0) = 617 cm\(^{-1}\) and taking into account that the number of rotational levels in level 01\(^{1}\)0 is twice as large (\(J = \text{even and odd} \)) as in levels 10\(^{0}\)0 and 02\(^{0}\)0 (\(J = \text{even only} \)). Assuming that the relative number of molecules in the ground vibrational state 00\(^{0}\) and the first excited vibrational state 01\(^{1}\)0 is also characterized by \(T_{\text{vib}} \approx 160 \) K we find a total number of CO\(_2\) molecules of \(5 \times 10^{11} \).
Clearly the temperature characterizing the distribution of rotational levels in the vibrational states of CO$_2$ (~450 K) is different from the temperature characterizing the distribution of molecules over the vibrational states (~160 K) so that the CO$_2$ molecules are close to, but not in thermal equilibrium. This non-LTE behaviour can be understood on the basis of the symmetry of the CO$_2$ molecule which does not allow pure rotational radiative transitions and the magnitudes of the cross sections for (de-)excitation of CO$_2$ by collisions with H$_2$, which are about three orders of magnitude larger for pure rotational transitions than for ro-vibrational transitions (Banks & Clary 1987). It can be shown by more detailed non-LTE multi-level line transfer calculations (de Jong, in preparation) that at a few stellar radii from the star and at H$_2$ densities above ~108 cm$^{-3}$ the rotational levels are more strongly coupled to the gas kinetic temperature (~400 K) while the population of the vibrational levels is dominated by radiation trapping in the ro-vibrational lines (the ones that we observe) resulting in a vibrational temperature somewhat below the kinetic temperature.

We suggest that CO$_2$ absorption and emission originate in two different regions of an extended dynamical atmosphere: one close to the star in the outer photosphere where the temperature is 1000 K, giving rise to the absorption seen at 4.25 and 14.95 µm, and the other farther out at few stellar radii, where the density is still high enough to thermally distribute the pure rotational levels at ~450 K. Assuming that the cooler CO$_2$ layer is located at ~3 stellar radii we find, from the total number of molecules observed, a column density N(CO$_2$) ~1015, two orders of magnitude smaller than that derived for the hot CO$_2$ gas (see Table 3) and also several orders of magnitude smaller than found for the warm gas in the star EP Aqr by Cami et al. (2000)

As proposed earlier by Tsuji et al. (1997), Yamamura et al. (1999), and Cami et al. (2000), we believe that the emission line gas detected here is part of the warm gas layer located between the stellar photosphere and the dust condensation zone. This gas is probably related to the blown-up atmosphere observed by Reid & Menten (1990) and found by Höfner et al. (1998) in their calculations of the dynamical atmospheres of pulsating stars. How CO$_2$ molecules are formed in this gas is unclear but they may well be a left-over from the preceding photosphere phase. According to Höfner et al. (1998), this gas is expected to have turbulent velocities of order 1 km s$^{-1}$. Eventually a little further out at ~5 stellar radii the dust is formed which then accelerates the flow to 5–10 km s$^{-1}$. The CO$_2$ is probably quickly photodissociated in the expanding envelope. We note here that the line widths of the emission are much narrower than those of the absorption, suggesting that the emission comes from a cooler (since we do not see higher overtone bands in emission), much less turbulent layer than that which produces the absorption. Whether the hot and cool layers of CO$_2$ are manifestations of the same gas needs to be investigated further in a detailed model for CO$_2$ excitation.

6. Summary

By fitting the SED of W Hya from the near- to far-IR, we derive a dust mass-loss rate of 3×10^{-10} M_{\odot} yr$^{-1}$ using a combination of three different dust species of amorphous silicate, Al$_2$O$_3$ and MgFeO. We also tried adding a fourth component of spinel to account for the 13 µm dust feature but in order to fit it, we also expect to see another strong peak at 16 µm which is not present in the observed spectrum. From this, we conclude that spinel cannot be the carrier of the 13 µm dust emission feature. Hence, the debate on the carrier of the 13 µm feature is still open. With the estimated value of the our dust mass-loss rate, we get a gas mass-loss rate range of $(3.5–8) \times 10^{-7}$ M_{\odot} yr$^{-1}$ from simple consideration of momentum dust driven wind. Our derived mass-loss rate agrees well with those previously derived to explain the CO emission, taking into account the differences in the adopted distance and velocity. However, the discrepancy still exists between these mass-loss rates and those derived from the H$_2$O emission, the latter being consistently higher. The difference in derived mass-loss rates from CO and H$_2$O may simply be due to the abundances assumed for each species.

We obtained the full scan SWS spectrum of W Hya in which we modelled the absorption bands due to various molecules. The derived excitation temperatures of different bands suggest that they originate from different layers of gas, from 300 K to 3000 K. However, some molecules exist over a wide range of temperatures and cannot really be stratified within a particular zone, particularly those which show multiple absorption bands. The exception may be OH which is a product of water molecules which are dissociated by shocks in the inner part of the envelope.

We also observed CO$_2$ bands in emission using SWS FP and were able to resolve the three strongest Q branches in the mid-IR. The resulting rotation diagram yields an excitation temperature of ~450 K while the CO$_2$ absorption at 14.97 µm requires a gas of 1000 K to explain the shift of the peak absorption bluewards. The stretching mode at 4.25 µm also requires a layer of hot gas to explain its width. We find from simple calculation based on the rotation diagram that the vibrationally excited levels may not be in LTE. Whether the CO$_2$ absorption and emission lines can indeed be explained by temperature stratification in an extended dynamical atmosphere needs to be investigated in a more detailed radiation transfer model.

Acknowledgements. We are grateful to our referee, Dr. J Alcolea for constructive comments which improves the discussion in our paper. This research has made use of the SIMBAD database, operated at CDS Strasbourg, France.

References

Cami, J., Ph.D. Thesis, University of Leiden