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ABSTRACT
The radial distribution of cells in blood flow inside vessels is highly non-homogeneous. This leads to numerous important properties of
blood, yet the mechanisms shaping these distributions are not fully understood. The motion of cells is governed by a variety of hydrodynamic
interactions and cell-deformation mechanics. Properties, such as the effective cell diffusivity, are therefore difficult to investigate in flows
other than pure shear flows. In this work, several single-cell, cell-pair, and large-scale many-cell simulations are performed using a validated
numerical model. Apart from the single-cell mechanical validations, the arising flow profile, cell free layer widths, and cell drift velocities
are compared to previous experimental findings. The motion of the cells at various radial positions and under different flow conditions is
extracted, and evaluated through a statistical approach. An extended diffusive flux-type model is introduced which describes the cell diffusiv-
ities under a wide range of flow conditions and incorporates the effects of cell deformability through a shear dependent description of the cell
collision cross sections. This model is applicable for both red blood cells and platelets. Further evaluation of particle trajectories shows that
the margination of platelets cannot be the net result of gradients in diffusivity. However, the margination mechanism is strongly linked to the
gradient of the hematocrit level. Finally, it shows that platelets marginate only until the edge of the red blood cell distribution and they do not
fill the cell free layer.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5085881

I. INTRODUCTION

Blood is a dense mixture of deformable cells and proteins
suspended in blood plasma. Its complex, non-Newtonian rheol-
ogy arises from these components. Red blood cells (RBCs) have
the highest concentration of about 40%–42% in a healthy human,
outnumbering platelets (PLTs) by 10:1 and white blood cells
(WBCs) by 500:1.1,2 Flowing in vessels, each cell species displays a
non-homogeneous distribution along the radius of the vessel. The
mechanisms that lead to lateral cell migration have been heavily
investigated. This includes studies on immersed droplet mechanics,
focusing on the hydrodynamic interactions,3–7 and studies aiming

specifically at blood cells to show the influence of various cell prop-
erties, such as shape, size, rigidity, and viscosity contrast.8–11 Apart
from the cells, the domain geometry also plays an important role.
Confinement was shown to cause deformable cells to migrate away
from the boundary.6,12,13 For instance, RBCs migrate away from
the vessel wall which creates a red blood cell free layer (CFL) of
plasma that acts as a lubrication layer around the cellular flow. As
an implication, a decreasing diameter of vessels gives rise to lower
bulk viscosities (Fåhræus–Lindqvist effect14). This tendency stops
when the vessel diameter approaches the RBC diameters, at which
point the bulk viscosity starts to increase again steeply.15 A fur-
ther implication is that the actual hematocrit flowing in small vessels
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(tube hematocrit) is lower than the discharge (or tank) hematocrit,15

which is called the Fåhræus effect. Moreover, a size exclusion effect
applies for blood cells flowing very close to the vessel wall. On one
hand, they have a finite size; therefore, their center of mass cannot
get closer to the boundary than their actual radius. On the other
hand, in vivo vessels are lined with a layer of macromolecules (i.e.,
glycocalyx) that protrudes in the plasma flow and prohibits the flow-
ing of larger cells, such as RBCs.16 The curved velocity profile of the
blood flow inside vessels also induces a lift force on cells. For rigid
spherical objects, this drives particles towards the 0.6 ∗ R radial posi-
tion (Segré-Silberberg effect), while for deformable cells, this force
points towards the center of the channel.17,18 This is the dominant
effect that causes an increased hematocrit and even overcrowding
of RBCs around the middle of the channel in smaller vessels.19–21

At vessel bifurcations, a combination of these effects leads to plasma
skimming and cell screening,16,22 and the non-trivial distribution of
local viscosity.23

An important remaining question is the description of cell-
cell interactions. While several numerical studies investigated the
intensity of cell diffusivity and cell margination24–26 under various
flow conditions, they generally report trends without examining the
mechanical root causes in detail. When blood is subject to a non-
zero shear flow, the interaction between cells leads to an increased
diffusive behaviour surpassing the thermal diffusion of the cells
by several orders of magnitude.27–29 This shear-induced diffusion
manifests in two ways. First, the consecutive collisions of a cell with
other cells cause repeated displacements, which results in a ran-
dom walk-like behaviour with a zero net flux (self-diffusion). And
second, the inhomogeneities in concentration and flow conditions
yield an additional term in diffusivity that has a non-zero net flux
(gradient-diffusion).13,30,31 In practice, these two effects are often
investigated together as it is difficult to separate them. They have a
significant contribution to the trafficking of immersed particles. In
fact, the inhomogeneous distributions of platelets and white blood
cells are attributed primarily to hydrodynamic interaction with the
dominant species (RBCs). Their lateral motion is defined by a series
of cell-cell collisions which are shown to depend on deformabil-
ity, relative size, and number density.10,32–34 The motion of smaller
particles (e.g., platelets), therefore, is usually approximated using
either drift-diffusion type equations35,36 or stochastic approaches.
For instance, the trajectory of a particle can be viewed as a stochastic
series of collisions forming a Markov chain where the evolution of
the probability density function is described by the Fokker-Planck
equation.36,37

Several numerical investigations have targeted these questions
to provide more detailed insight into the collision events. These tech-
niques typically rely on immersed boundary simulations,11,38–40

the boundary integral method,41,42 or dissipative particle dynam-
ics.43,44 Despite these efforts, a robust framework that can fully
describe the shear-induced diffusive behaviour of a dense mixture
of deformable particles is currently not available. Several models
have been proposed for simplified systems, such as monodisperse
suspensions for hard spheres. One well-known model is the diffu-
sive flux model introduced by Leighton and Acrivos,27 which was
later further refined by Phillips et al.45 by introducing irreversible
particle interactions. Recently, it was extended to bidisperse sus-
pensions of rigid spheres.46 Another phenomenological model is
the suspension balance model that describes fluxes associated with

particle collisions.47,48 While these idealised models progress our
understanding of the governing mechanisms, they are so far unable
to provide quantitative predictions that are in full agreement with
the experimental results.

In the current work, several cellular blood flow simulations are
performed to evaluate the detailed diffusive behaviour of the cells.
Since many of the aforementioned mechanisms cannot be repro-
duced in pure shear flow, the study is based on both pure shear
and body-force driven straight channel flows of up to 1 s of flow
with varied shear rates and hematocrit levels. Single-cell mechanics
and emerging bulk properties are compared to previous experimen-
tal results to ensure the validity of the computations. And finally,
an extended drift-diffusion model is proposed that takes cellular
deformation due to local flow conditions into consideration.

II. METHODS
A. Numerical methods

The cellular flow is simulated with the HemoCell software.40,49

It is based on a combination of the lattice Boltzmann method
(LBM) which has been shown to reproduce accurate flow fields in
vascular settings50–53 and a high-performance implementation of
the immersed boundary method (IBM).54,55 The blood plasma is
represented as an incompressible Newtonian fluid, and the cells
are modelled as triangulated membrane meshes immersed in the
plasma flow. Out of the more wide spread phenomenological mod-
els,40,44,56,57 the one introduced by Závodszky et al.40 is employed
in the current work due to its improved mechanical behaviour in
the case of sustained shear rates over 1500 s−1. In the current work,
we employ the same parameters as reported in Ref. 40, where the
detailed description of this model and its numerical implementation
can be found. Two different flow configurations are considered: pure
shear flows to investigate single-cell deformations and cell-cell pair
interactions, and body force driven straight channel flows. The lat-
ter allows the incorporation of the effects resulting from the complex
bulk behaviour of blood in the presence of gradients. Computation-
ally, these are large-scale simulations, each of which was run on 256
computing cores for up to 10 days of wall clock time to accurately
resolve 1 s of flow.

For the validation of the single-cell mechanics, we refer the
reader to the work of Závodszky et al.,40 where the deformation of
single RBCs due to stretching and shearing was thoroughly inves-
tigated and compared to experimental results and other numerical
models. It was found that the shape of the sheared model RBC
reproduced very well that of the healthy human RBC. Further-
more, the same work contains validation of collective cellular flow
behaviour of the model in straight channels regarding the emergent
bulk viscosity, cell free layer, and flow profile. Due to the signifi-
cance of the latter in relation to the current work, the comparison
of emerging flow profiles has been reproduced from previous simu-
lation data here. In the work of Carboni et al.,58 tracking particles
were used to make the velocity profile visible in a straight rectan-
gular channel flow of high hematocrit blood (H = 35%). In Fig. 1,
a comparison is shown between the experiments and the velocity
profile computed with HemoCell using the same geometry, hemat-
ocrit level, and boundary conditions. The results are in good agree-
ment with the experiments, which indicates the good accuracy of the
model.
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FIG. 1. Comparison of cross-channel flow velocity profiles between the current
numerical method and experiments58 at H = 35%. The average distance of the
measurement points from the simulated profile is ∆v = 0.15 mm/s.

B. Extended diffusivity model
The effective diffusivity of monodisperse particles in a confined

suspension flow is influenced by three different length scales: first,
the characteristic size of the colliding particles, which is generally
taken as the radius, then, the typical distance between particles, and
finally, the distance from the wall.29 In dilute suspensions far from
the boundaries, the dominant length scale is the characteristic parti-
cle size. In this case, several scaling studies suggest4,21,30,59 that the
shear-induced diffusivity takes the following form:

D = Ca2γ̇Φ, (1)

where γ̇ is the shear rate, Φ is the volume fraction, a is a charac-
teristic length scale of the particle (e.g., the radius), and C denotes
a parameter dependent on the shape and material properties of the
particles. The latter is usually estimated from experimental observa-
tions.13 However, since RBC dynamics and deformation depend on
the shear rate,12,13,60 apart from the low shear rate cases, the effects
of cell deformation must be taken into account. To do this, Eq. (1)
needs to be extended. The amount of cell displacement over time
can be approximated along the ideas of the diffusive flux model as
being proportional to the frequency of collisions. The frequency of
collisions is, in turn, proportional to the size of the collision cross
section, the relative velocity of the particles on a collision trajectory
(i.e., the shear rate), and the volume fraction. Recently, Rosti et al.61

showed the importance of shear-induced cross section change of
elastic deformable capsules in terms of the emergent viscosity of
the sheared system. Here, we argue that the shear-induced deforma-
tion of RBCs is also important in terms of the appearing diffusivity.
Furthermore, the effects of this deformation can be approximated
through the changes in the collision cross section. A moderate hema-
tocrit level where the pair-collisions dominate is assumed, and the
effect of collisions between three or more cells is neglected. The
collision cross section for two cells is defined as

σ(γ̇) = π[r1(γ̇) + r2(γ̇)]
2, (2)

where r1 and r2 denote the shear dependent collision radius of the
two cells in the direction of the shear gradient. Note that the two
cells can belong to different species.

Incorporating the collision cross section in Eq. (1) leads to the
extended form of shear-induced diffusivity

D = C′σ(γ̇)γ̇Φ, (3)

where C′ is a shear rate independent fitted parameter, unique to
the colliding cell type pairs. In our computations, the cell radii are
defined as

rPLT = 1.2µm,

rRBC(γ̇) = 3.92µm ⋅Dnorm(γ̇),

where Dnorm(γ̇) is the normalised RBC diameter which is used
to define the collision radius. This collision radius of a single
RBC in shear flow as a function of shear rate is shown in Fig. 2.
This curve was extracted from simulations using HemoCell up to
γ̇ = 4000 s−1, which is higher than the highest appearing shear rate
value in the subsequent simulations. It shows a steep deformation
curve that agrees well with both experimental and previous com-
putational observations62,63 (for further details, see the Wheeler
test validation in Ref. 40). For the rest of the current work, we
use this curve to define the shear dependent diameter of RBCs for
the collision cross sections. We also provide a fitted function that
matches the simulated results closely in the form of a ⋅e−bγ̇ +c, where
a = 1

1.6 , b = 0.0013, c = 0.6
1.6 , with a mean square error =5 × 10−4

(shown in Fig. 2).

C. Cell collision simulations
We focus on cell displacement from an isolated cell pair-

collision event where at least one of the cells is deformable.
The displacement after the collision is strongly dependent on
the capillary number.10,34,42 Such a collision setup is depicted in

FIG. 2. Normalised collision diameter of an RBC in pure shear as a function of
shear rate. The dashed line denotes the fitted function of a ⋅ e−bγ̇ + c, where
a = 1

1.6 , b = 0.0013, c = 0.6
1.6 .
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FIG. 3. Schematic overview of an RBC-platelet pair collision in shear flow. The
distance between the centre of mass of the colliding cells is denoted as d, and ∆d
denotes the displacement of the centre of mass of a cell after the collision.

FIG. 4. Resulting cell displacement during a cell pair collision in pure shear, with
the original cell core distance (d) of 2 µm. The total displacement between before
and after the collision is denoted ∆d. (a) Platelet displacement of an RBC-platelet
collision. (b) RBC displacement of an RBC-RBC collision.

Fig. 3. The cell types of interest in the current work are RBCs
and platelets with RBCs being the significantly more numerous
species. Due to this, collisions not involving at least one RBC are
neglected. We show RBC-RBC and RBC-platelet collision events in
Fig. 4.

As a limiting case, rigid sphere binary collisions in Stokes flows
are time reversible. In our case, the time symmetry does not hold
due to the deformability of the RBCs (the effect of surface roughness
and of protein chains in plasma64,65 is not modeled). In an RBC-
PLT pair collision, as expected based on cell mass differences, the
RBC is barely affected (<0.1 µm typical displacement). Meanwhile,
the platelet is forced to a trajectory around the RBC during the col-
lision resulting in a larger displacement, which is proportional to
the common collision radius of the two cells. For lower shear rate
cases, the amount of deformation is limited; therefore, the collision
in principle is closer to the rigid sphere case than the ones with high
shear rate. During the collision, as shown in Fig. 4(a), the platelet
displaced up to 6 µm, but right after the collision it settles back to
around 2.7 µm. This returning trajectory is not so pronounced in
higher shear cases and in RBC-RBC collisions [Fig. 4(b)] where there
is more deformation involved. In general, with the increase of shear

FIG. 5. Mean square displacement curves of RBC trajectories in five different coax-
ial volumes within a straight tube flow. Region 1 is in the middle of the tube, while
Region 5 is next to the wall. (a) Values of Eq. (4) as a function of τ. (b) Normalised
mean square displacement as a function of strain.
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FIG. 6. (a) Visualisation of a periodic straight cylindrical channel flow computation
of about 620 cells after 1 s of flow with marginated platelets. (b) Visualisation of
four coaxial layers in the same simulation.

rate the final displacement of the cells decreases. This trend is partly
driven by the decreasing radius of the RBCs in the shear gradient
direction (i.e., collision radius) due to deformation in the sheared
environment.

D. Cylindrical channel flow simulations
We calculate the effective diffusivity of particles from their tra-

jectories. For a large enough time-window (τ), the diffusivity (i.e.,
tracer diffusivity) of particles in the x direction can be estimated
from their displacement during τ time66–68

Dxx =
1
N

N
∑
i=1

⟨(xi(τ) − xi(0))2⟩
2τ

, (4)

where N denotes the number of tracked particles. The τ time-
window has to be large enough to incorporate several collision
events, otherwise Eq. (4) represents ballistic behaviour of the cells
and will be quadratic in time. The choice of the appropriate time-
window depends on the shear rate, and it scales as τ ∼ 1/γ̇.

TABLE I. List of the parameter values for Re(−) and H(%) in cylindrical
channel flows of D = 50 µm diameter. In total 15 channels, flow simulations
have been carried out using these value pairs.

Re 0.04 0.4 0.4 0.5 0.5 1.0 1.0 1.0 1.5 1.5 1.5 1.7 2.0 2.0 2.0
H 10 7 10 27 35 10 27 35 10 27 35 35 10 27 35

To make sure that we evaluate trajectories in the diffusive regime we
fine-tuned τ for every computation. An example of such a tuning is
shown in Fig. 5 for five different coaxial regions, with each forming
a hollow cylindrical volume. These volumes fill the full cylindrical
channel like onion layers, and they represent regions of different
shear rate and hematocrit values in the flow [for a visualisation of
such coaxial volumes, see Fig. 6(b)].

The pressure driven flow of the straight capillary tube includes
up to 620 cells [see Fig. 6(a) for an overview]. The diameter
of the channel is D = 50 µm, and the two varied parameters
are the Reynolds number and the hematocrit. The combination
of these parameters is listed in Table I. They cover the widest
physiological range that might arise in either venous or arterial
microcirculation.

We focus on the radial diffusivity Drr (i.e., the diffusivity in the
shear gradient direction), as the diffusivity in the vorticity direc-
tion is typically at least an order of magnitude smaller than the
radial diffusivity.69–71 Furthermore, we neglect thermal diffusivity
based on the Stokes-Einstein equation. For micron-sized particles in
blood plasma, it predicts a Brownian motion at least two orders of
magnitude smaller than the shear-induced diffusivities.

FIG. 7. (a) RBC and PLT volume fraction profiles. (b) Shear rate profile in the same
simulation (tube flow of D = 50 µm, HD = 35%, Re = 1.5). R denotes the normalised
radial position.
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Radial diffusivity is calculated from the trajectories of the cells
using Eq. (4). The whole domain of the tube is subdivided into
eleven coaxial regions along the radius [similarly to Fig. 6(b)], and
all the reported values are averaged in time (100 ms window) and
in space within these regions. The shear rate is calculated in every
fluid node within the region before averaging, and the hematocrit
is calculated using the number of RBC center of masses within a
region. The width of these regions corresponds to the size of the
platelets (≈2.5 µm). This choice on one hand necessitates a large
sample number to reduce the noise, but on the other hand, it enables
us to investigate the effects of cell-scale gradients. This way PLTs will
often and RBCs will always overlap with multiple regions of different
hematocrit and shear values.

An example of an emerging hematocrit and platelet volume
fraction profile with flow shear rate along the radius is shown in
Fig. 7 based on these regions. Note that the peak in the hemat-
ocrit in the middle of the tube is more pronounced for vessels of
small radius, due to the larger relative wall effects and wall induced
lift. In larger simulated channels with D = 80 µm and 128 µm
at similar overall hematocrit values, the peak disappears and the
center region of the profile smoothens out. In smaller diameter
flows, however, there is always a small volume of the low shear
rate and high hematocrit in the middle in accordance to previous
findings.19,37 The case in Fig. 7 is from a simulation of Re = 1.5
and H = 35% where the trajectories are evaluated from t = 0.5 s to
t = 1.0 s.

III. RESULTS
A. Radial diffusivity

Two additional comparisons have been made with experi-
mental results to assess the accuracy of the diffusivity computa-
tions. In the rectangular channel flow discussed in Ref. 58 (see
also Sec. II A), the diffusion coefficient of spherical tracer particles
(D = 2.11 µm) averaged over the channel was found to be
approximately 0.15 × 10−6 cm2 s−1. Under the same flow con-
ditions, platelets in our computations yield a close value of
0.24 × 10−6 cm2 s−1. In a much slower channel flow of 10%
hematocrit,72 the tracer particle diffusivity was found to be
8.5 × 10−9 cm2 s−1. Our computational replica of that experiment
yields a value of 7.54 × 10−9 cm2 s−1 for platelets. Note that there
might be differences arising from the shape since the tracer particles
in the experiments are spherical, while our platelets are ellipsoidal.

Using the results of the other 15 simulations, the parameter
C′ of Eq. (3) can be inferred by correlating the model predictions
with the effective diffusivities that are extracted from the cell tra-
jectories using Eq. (4). In the following, we define C′ with the help
of a fitting coefficient a as C′ = a

σ(γ̇=0) . Figure 8 shows the fitting
to the simulation results. In this figure, every data point represents
an average value within a different region (i.e., a coaxial volume)
in one of the simulations. The model uses the local hematocrit and
shear rate values from that specific region, while Drr describes the
effective diffusivity of the same region based on cell trajectories.
The regions in the center of the channel flows (around R = 0) are
excluded from the fit, as the hematocrit in these volumes is extremely
high. Here a different scaling is expected13,73 due to cell clustering
and volume exclusion effects. The two volumes next to the vessel

FIG. 8. Correlation between the modelled radial diffusivity [based on Eq. (3)] for
RBCs (a) and PLTs (a). The yellow squares correspond to regions in the middle of
the channel with high hematocrit and the black triangles show regions close to the
wall. These two regions are not expected to follow the model predictions.

wall, denoted by black triangles, are also excluded since they cover
mostly the cell free layer where RBCs are absent. Therefore, we have
too few trajectories for RBCs and the diffusivity for platelets comes
from their tumbling in high shear. Those few RBCs appearing in the
CFL region present low average diffusivities that are mostly asso-
ciated with lift force generated movement. The fit for RBCs yields
aRBC = 0.81 cm2 with a linear correlation coefficient of 0.92, and
for platelets aPLT = 1.02 cm2 with an even higher linear correlation
coefficient of 0.96.

Next, we can use these fitted values to compare the model
predictions of Eq. (3) to trajectory-extracted diffusivities along dif-
ferent radial positions. Figure 9 shows a representative example
for the Re = 1.5, H = 35% channel flow, where Fig. 9(a) corre-
sponds to RBC diffusivities and Fig. 9(b) shows the same for PLTs.

Phys. Fluids 31, 031903 (2019); doi: 10.1063/1.5085881 31, 031903-6

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 9. Comparison between the radial diffusion inferred from the particle trajecto-
ries according to Eq. (4) and the model predictions of Eq. (3) along the radius of
the vessel with Re = 1.5, H = 35%. (a) RBC radial diffusivities and (b) PLT diffusiv-
ities. The error bars represent the standard deviations. R denotes the normalised
radial position.

The PLT diffusivity is also compared to the approximations of the
Zydney-Colton model, which was found to overestimate platelet
diffusivity significantly in regions of high shear rates. Note that
cell diffusivity values for platelets have larger standard deviations
than the values for RBCs. The reason is that platelets marginate
outwards from the flow, and once they leave a region they rarely
return. Therefore, the amount of samples they generate in a region is
limited.

The discrepancy around R = 0.8 arises from the numerical
method of averaging within the regions, and it scales with the size
of the regions (i.e., the numerical resolution). The reason is that
the discretization cannot capture the exact location of the steep
gradient of the hematocrit at the edge of the CFL. Otherwise, the
model shows good agreement for both cell types. Note that for the
platelets, the Drr values are absent in the centre of the channel since

in the case of high hematocrit they are pushed out from that region
quickly.

B. Drift velocity
The average drift velocity of the particles can also be extracted

form the trajectory samples similarly to Eq. (4),

Vxx =
1
N

N
∑
i=1

⟨xi(τ) − xi(0)⟩
τ

. (5)

For RBCs, the average drift velocity fluctuates around zero when the
hematocrit profile equilibrates in 50–100 ms after start-up from a
random homogeneous initial distribution. Afterwards, the net flux
of gradient diffusivity balances the flux caused by the drift arising
from cell overcrowding in the middle of the channel and from lift
forces due to wall effects and flow profile curvature. This balance
mechanism was also demonstrated recently in the work of Qi and
Shaqfeh.74 For platelets, however, there is no stable balance inside
the bulk flow, and the acting forces result in a positive overall flux
towards the wall. Figure 10 shows the average drift velocity profile
from the Re = 1.5, H = 35% simulations along the radial regions.
The qualitative shape is similar for all cases which allows for gen-
eral observations. A high peak of the drift velocity is observed in
the centre of the channel (R = 0). The corresponding sample tra-
jectories originate mostly from the early phases of the simulations
since platelets vacate this region quickly with the increase of the
local hematocrit. There are previous findings, where platelet trajec-
tories also showed short initial inward migration.37 This effect is
absent in our computations most likely due to the well mixed ini-
tial conditions of the system using the method developed in our
previous work.40 The negative drift at the wall (R = 1.0) is again
an early phase phenomenon, caused by platelets that were put flat
next to the wall during the initial condition generation. The lift
force generated on these by rolling on the wall surface quickly drives
them inwards where they start to tumble. Experimental findings58

show an average tracer particle drift of Vdrift = 0.0017 cm/s for flow
conditions within our parameter range. While direct comparison is
not feasible, if we disregard the two regions with early stage arte-
facts (R = 0 and 1.0), the computation of Re = 1.5, H = 35% falls
close in flow conditions and presents an average platelet drift of
<Vdrift> = 0.0019 cm/s (see the radial profile in Fig. 10). Looking
at the general properties of the function, the drift velocity tends to
zero as we approach the edge of the CFL where the platelets start
to accumulate. There is one more region around R = 0.6 where
the drift is typically low. Indeed, comparing it to the platelet pro-
file in Fig. 7(a), we see a slighter PLT accumulation here as well.
By the end of the computations, most of the PLTs reside in or
at the edge of the CFL. The radial trajectories of a few randomly
selected platelets from the simulation Re = 1.5, H = 35% are shown
in Fig. 11, where the accumulation around R = 0.6 is also appar-
ent. The edge of the CFL for this case is denoted by a dashed line,
and the width of it agrees with the experimental measurements.75

Platelets are marginated towards this region and eventually, after
0.9 s, they reside either in the CFL or around R = 0.6, the two places
with close to zero drift in Fig. 10. Furthermore, platelets do not fill
the CFL homogeneously, rather they aggregate on the edge of the
RBC filled domain, periodically penetrating into the low hematocrit
layers.
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FIG. 10. Drift velocity (V rr ) profile of PLTs (dashed line) and
hematocrit gradient (bars) from the simulation Re = 1.5,
H = 35% [the hematocrit profile is shown in Fig. 7(a)]. R
denotes the normalised radial position. While local drift val-
ues vary based on the hematocrit and shear rate, the overall
qualitative shape of the curve is similar for every channel
flow simulation.

FIG. 11. Radial trajectories (coloured lines) of randomly selected platelets with
RBC trajectories (grey lines) as background. The dashed line indicates the edge
of the cell free layer. Note that the radial scale is quadratic to maintain the correct
volume density of cells in the plot.

IV. DISCUSSION AND CONCLUSIONS
Cell pair collision simulations (for instance, in Fig. 3) show that

the outcome of the collision is dependent on the local shear rate. The
amount of cell displacement is directly influenced by the changed
cross section of the cells. This in turn has effect on the diffusive
behaviour. This leads to two competing processes. An increase in
shear rate increases the collision frequency of the cells, while at the
same time it decreases their collision radius. The proposed model
based on Eq. (3) captures this by allowing the collision radius of
the cells to vary as a function of shear rate. When comparing our
results to the model of Zydney-Colton, we find a very good agree-
ment between the models for low shear (i.e., below 100 s−1) where
RBC deformations are small. However, for higher shear rate zones,
the Z-C model can overestimate diffusivity significantly (up to a
factor of 5–10 in our cases).

There are two limitations, however, to our proposed model.
In high hematocrit regions (above 40%–45%), our model assump-
tions are no longer accurate, as they lead to an underestimation of
the diffusivities (see, e.g., the yellow squares in Fig. 8). In the work
of Mountrakis et al.,73 a scaling of ∼ γ̇1/2 was found in a constant
shear 2D system, which we cannot confirm for the current channel
flows as it would lead to even stronger underestimation of Drr values.
Grandchamp et al.13 suggested a scaling of ∼H2 for high hematocrit
Poiseuille flows by including three particle collisions, which might
explain the increased diffusion. Apart from this, the diffusivity on
the edge of the CFL is not fully captured. The cell dynamics here is
different since collision events from one side of the cells are much
more frequent. The two balancing processes for RBCs are there-
fore the deformation induced lift against the displacement from the
one-sided collisions.

Platelets in our simulations marginated to the edge of the RBC
rich domain, in accordance to the findings of Vahidkhah et al.76 As
observed in Fig. 7(a), the platelets mostly reside at R = 0.9, mixed
with the dilute RBC layer, periodically penetrating the close higher
hematocrit region and then drifting back to the edge of the CFL. Pre-
vious studies hypothesised that platelet margination is primarily the
result of the gradients in platelet diffusivity.35,45 In our simulations,
platelet drift manifests as a small skewness on the distribution of PLT
displacements, which results in a non-zero mean. That is, the result
of multiple cell collisions and hydrodynamic interactions in the pres-
ence of gradients is not purely diffusive. Note that even if the relative
magnitude of this skewness is small, it might still influence the cal-
culation of Drr . When we included corrections (i.e., subtracted the
mean drift from individual displacements), it only led to insignifi-
cant differences (up to 1%) in the resulting Drr . This shows that this
effect is small and easy to overlook. However, in a statistical sense,
it has a significant impact as it eventually leads to margination. The
main argument which shows that the platelet margination cannot be
the sole result of diffusive flux is that the gradient of the diffusivity
is positive from the centre of the channel towards the wall up until
R = 0.7 [see, e.g., Fig. 9(b)]. The net flux contribution in the radial
direction is proportional to −@Drr

@r , which drives platelets inwards.
Since the actual overall motion of the platelets points to the other
direction, towards the wall, it must be governed by a stronger effect.
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The shape of the platelet radial drift velocity (Fig. 10) shows resem-
blance to the hematocrit gradient, suggesting that the change in
hematocrit levels has a larger influence on the platelet motion than
the increase of shear rate. The magnitude of the drift increases
slightly with the increase of average flow velocity; however, in agree-
ment with previous experimental findings using tracer particles,33 it
increases more substantially with the increase of hematocrit. This
further indicates the important role of the hematocrit profile in
relation to platelet margination.

This study relies on several major assumptions. The results are
devised using straight vessel sections, and therefore, the extended
diffusive flux model is expected to require additional terms in bifur-
cations and in highly curved sections. For the shear rate and hema-
tocrit, the typical physiologic range of small vessels was investi-
gated. A different transport behaviour is expected13,73 in the case
of high hematocrit (>50%) or shear rate (>4000 s−1). Furthermore,
we employed a cytoplasmic viscosity ratio of Λ = 1. de Haan et al.11

showed that this results in less than 5% difference in the displace-
ment during cell collisions for shear rates <4000 s−1; hence, this
effect is neglected. Finally, the plasma is modelled as a Newto-
nian fluid. Recent studies64,77 demonstrated that plasma can display
strain hardening due to the contained protein chains. While this
effect requires further investigation, de Haan et al.11 also demon-
strated that the local elongation rate stays below the strain hardening
threshold for cell collisions in shear rate below 1000 s−1.

With the advance of high-performance cellular modelling tools,
such as HemoCell, large-scale investigations of cellular flow systems
containing gradients are becoming available. Based on the evalu-
ation of simulated cell trajectories, we proposed an extension to
the diffusive flux model. It incorporates a more accurate approxi-
mation of the cell collision frequency and displacement, by allow-
ing the collision cross section of the cells to change as a function
of the local shear rate. According to our findings, this extension
is important when describing cellular flows above the shear rate
of 100 s−1. Therefore, it allows for a better description of par-
ticle transport processes under the flow conditions appearing in
real blood vessels. Furthermore, the results suggest that in vascu-
lar blood flows the radial migration of cells towards the wall is
primarily dependent on the local hematocrit gradient. This is an
important pointer in the development of the platelet margination
theory.
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