Lattice-Boltzmann simulations of driven transport in colloidal systems
Capuani, F.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction

2 Hydrodynamics and the lattice-Boltzmann method
 2.1 Introduction .. 5
 2.2 Phenomenological hydrodynamics equations 5
 2.3 The Boltzmann equation 9
 2.4 Lattice Boltzmann equation 11

3 Introduction to electrokinetics
 3.1 The Poisson–Boltzmann equation and the electric double layer 19
 3.2 Electrokinetic phenomena 21
 3.3 Electrokinetic equations 24

4 Velocity fluctuations and dispersion in a simple porous medium
 4.1 Introduction .. 27
 4.2 Description of the model 30
 4.3 Results ... 31
 4.4 Conclusions .. 39
 4.4 Initial rate of decay of the LVCF 41
 4.5 Computing Streamlines 42

5 Discrete solution of the electrokinetic equations
 5.1 Introduction .. 43
 5.2 Numerical lattice method 45
 5.3 Boundary conditions 50
 5.4 Electrokinetic equations 52
 5.5 Validation tests 53

6 Sedimentation velocity of highly charged spheres
 6.1 Introduction .. 65
 6.2 Charge localization for non rod-like particles 66
 6.3 Sedimentation velocity 70
 6.4 Effective surface charge 73
Contents

7 Sedimentation velocity of charged disks 79
 7.1 Introduction .. 79
 7.2 Electrokinetic model 80
 7.3 Sedimentation of neutral disks 81
 7.4 Sedimentation velocities of charged disks: effect of charge ... 83
 7.5 Sedimentation velocities of charged disks: volume fraction dependence 85
 7.6 Sedimentation velocity of charged disks: effect of the diffuse layer ... 86
 7.7 Sedimentation velocity of charged disks: shape effects. 92

8 Electrophoretic mobility of charged-neutral model proteins 101
 8.1 Introduction .. 101
 8.2 Model system .. 102
 8.3 Electrophoretic mobility of a sphere with an electric dipole. 103
 8.4 Electrophoretic mobility of a quadrupole 103
 8.5 Electrophoretic mobility of a colloid with zero quadrupole 107

A Problems with a multi-component lattice-Boltzmann description of an electrolyte 113
 A.1 Lattice Boltzmann method for solving the electrokinetic equations .. 113
 A.2 Boundary nodes and origin of the spurious currents 118

Bibliography 121

Samenvatting 127

Acknowledgments 129