A new entry to adenosine analogues via purine nitration - Combinatorial synthesis of antiprotozoal agents and adenosine receptor ligands

Rodenko, B.

Citation for published version (APA):
CONTENTS

CHAPTER 1 INTRODUCTION
1.1 Solid phase synthesis and combinatorial chemistry 2
1.2 Adenosine receptors 4
1.3 Nucleosides as anti-parasitic agents 13
1.4 Outline of the thesis 24
1.5 References 24

CHAPTER 2 SOLID PHASE SYNTHESIS OF 2,N6-DISUBSTITUTED ADENOSINE ANALOGUES
2.1 Introduction 30
2.2 Functionalising the purine skeleton 30
2.3 The nitro group as a leaving group 32
2.4 Solid supported syntheses 32
2.5 Library synthesis 37
2.6 Concluding remarks 37
2.7 Acknowledgements 37
2.8 Experimental 39
2.9 References 43

CHAPTER 3 SOLID PHASE SYNTHESIS OF DI- AND TRISUBSTITUTED 5'-CARBOXAMIDO-
ADENOSINE ANALOGUES
3.1 Introduction 46
3.2 Solid phase syntheses with Kenner's sulfonamide linker 49
3.3 Solid phase syntheses with the hydrazide linker 51
3.4 Concluding remarks 57
3.5 Acknowledgements 57
3.6 Experimental 57
3.7 References 64

CHAPTER 4 CONFORMATIONALLY RESTRICTED ADENOSINE ANALOGUES
4.1 Introduction 68
4.2 Synthetic approach towards 2,N6 tethered adenosine analogues 71
4.3 Macrocycles derived from symmetrical diamines 72
4.4 Macrocycles derived from asymmetrical diamines 74
4.5 'Open' 2,6 disubstituted analogues 77
4.6 2,5'-Tethered adenosine analogues 78
4.7 Binding studies at the adenosine receptors 82
4.8 Concluding remarks 84
4.9 Acknowledgements 84
4.10 Experimental 84
4.11 References 95