Effect of food intake on pharmacokinetics of oral artemisinin in healthy Vietnamese subjects

Published in:
Antimicrobial Agents and Chemotherapy

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Effect of Food Intake on Pharmacokinetics of Oral Artemisinin in Healthy Vietnamese Subjects

TRAN KHAC DIEN,1,2 PETER J. DE VRIES,3,4 NGUYEN XUAN KHANH,1 RICHARD KOOPMANS,2 LE NGUYEN BINH,1 DAO DINH DUC,1 PIET A. KAGER,3 AND CHRIS J. VAN BOXTEL2

Institute for Clinical Research in Tropical Medicine, Bach Mai Hospital,1 and Institute of Malariology, Parasitology and Entomology,4 Hanoi, Vietnam, and Department of Clinical Pharmacology and Pharmacotherapy2 and Department of Internal Medicine, Division of Infectious Diseases, Tropical Medicine and AIDS,3 Academic Medical Center, University of Amsterdam, The Netherlands, Amsterdam, The Netherlands

Received 19 June 1996/Returned for modification 1 November 1996/Accepted 20 February 1997

The influence of food intake on the pharmacokinetics of artemisinin was studied with six healthy Vietnamese male subjects. In a crossover study, artemisinin capsules (500 mg) were administered with and without food after an overnight fast. Plasma samples were obtained up to 24 h after intake of each drug. Measurement of artemisinin concentrations was performed by high-performance liquid chromatography with electrochemical detection. Tolerance was evaluated according to subjective and objective findings, including repeated physical examinations, routine blood investigations, and electrocardiograms. Pharmacokinetics were analyzed with a noncompartmental method and with a one-compartment model. This model had either zero-order or first-order input. No statistically significant differences were found between the results of the two experimental conditions. Specifically, there were no consistent differences in parameters most likely to be affected by food intake, including absorption profile, absorption rate, bioavailability (f) (as reflected in area under the concentration time curve [AUC]), and drug clearance. Some mean ± standard deviation parameters after food were as follows: maximum concentration of drug in serum (Cmax), 443 ± 224 μg·liter⁻¹; time to Cmax, 1.78 ± 1.2 h; AUC, 2,092 ± 1,441 ng·ml⁻¹·h, apparent clearance/f, 321 ± 167 liter·h⁻¹; mean residence time, 4.42 ± 1.31 h; and time at which half of the terminal value was reached, 0.97 ± 0.68 h. The total amount of artemisinin excreted in urine was less than 1% of the dose. We conclude that food intake has no major effect on artemisinin pharmacokinetics. In addition, we conclude tentatively that artemisinin is cleared by the liver, that this clearance does not depend on liver blood flow (i.e., that artemisinin is a so-called low-clearance drug), and that absorption of the drug is not affected by food intake.

Artemisinin and its derivatives are produced from the medicinal herb Artemisia annua. They constitute a class of potent antimalarial drugs. Some of these compounds have already been used for many years in areas in which malaria is endemic, mainly in Asia, and are currently undergoing phase II or phase III studies in other areas. Studies in China, Vietnam, and Thailand have shown that artemisinin and derivatives quickly reduce parasitemia in patients with acute falciparum malaria and induce fast resolution of symptoms (10, 11, 13, 17, 19, 22). Dosage regimens have largely been determined empirically. Few pharmacokinetic data are available to aid the development of rational dosage regimens, which is partly attributable to limited access to a sensitive and specific assay for measuring the concentration of artemisinin in plasma. A recently developed accurate high-performance liquid chromatography (HPLC) technique with electrochemical detection has now enabled additional studies (4, 12, 20).

In a previous study of the pharmacokinetics of artemisinin after a single 500-mg oral dose on an empty stomach in healthy Vietnamese subjects, it was found that absorption of artemisinin was rapid but probably incomplete, yielding peak concentrations of 289 to 734 ng·ml⁻¹ (4). Very high values for the apparent volume of distribution/bioavailability ratio (V/f) and clearance/bioavailability ratio (Cl/f) were found. Mean ± standard deviation (SD) elimination was rapid, with a half-life of 2.6 ± 0.6 h.

The in vitro MIC of artemisinin for Plasmodium falciparum is 3 to 30 ng·ml⁻¹ (8, 9, 18, 23). Plasma drug concentrations were higher than the MIC for up to 12 h after dosage. Since the bioavailability of artemisinin is probably low, influences on absorption might have implications for efficacy. An important aspect of therapy is that artemisinin, a treatment for acute disease, will be administered irrespective of recent food intake. Artemisinin is neither very water soluble nor lipid soluble. Food intake could be a major determinant of absorption. Apart from its influence on absorption, food intake could also affect hepatic clearance by stimulation of liver blood flow, since hepatic clearance is probably the most important route of elimination for artemisinin (15, 16, 21). In view of these important clinical consequences, this study was performed to investigate the effects of food intake on the pharmacokinetics of artemisinin.

MATERIALS AND METHODS

Subjects. The study population consisted of six healthy Vietnamese male subjects. Their mean ± SD age was 29 ± 8 years, height was 164 ± 5 cm, weight was 48 ± 4 kg, body mass index was 1.8 ± 1.2 kg·m⁻², and body surface area was 1.5 ± 0.06 m². All volunteers gave written informed consent. Medical history and physical examination were normal for each volunteer. Values of routine laboratory tests including hemoglobin, hematocrit, leukocyte count, platelet count, blood urea nitrogen, creatinine, bilirubin, serum transaminases, and alkaline phosphatase were within normal limits, and hepatitis B surface antigen was not detectable. Electrocardiographic results for all subjects were normal. A history of alcohol or drug abuse, recent use of medications, and known allergy to

* Corresponding author. Mailing address: Academic Medical Center, University of Amsterdam, The Netherlands, Department of Internal Medicine, Division of Infectious Diseases, Tropical Medicine and AIDS, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands. Phone: 31-20-5664380. Fax: 31-20-6972286.
The column was prepacked with 10-μm-diameter particles with 125-Å pores (10 m) until analysis. Urine was collected during the first 12 h after each dose. The log-linear concentration-time plot indicated the absence of a distribution phase. There were very large values for the absorption parameters after food are shown in Table 1, and those without food were calculated as ratios.

The drug was tolerated well; no adverse reactions were observed during the experimental periods. The pharmacokinetic parameters after food are shown in Table 1, and those without food are shown in Table 2.

The log-linear concentration-time plot indicated the absence of a distribution phase. There were very large values for the absorption parameters after food are shown in Table 1, and those without food are shown in Table 2.

The log-linear concentration-time plot indicated the absence of a distribution phase. There were very large values for the absorption parameters after food are shown in Table 1, and those without food are shown in Table 2.
needed. Observed concentrations and the calculated concentration-time courses of two representative subjects (no. 1 with zero-order absorption and no. 6 with first-order absorption) are shown in Fig. 2. There was a fair agreement between parameters calculated with the compartmental and noncompartmental methods for every individual under both experimental conditions. Large interindividual variations among the pharmacokinetic parameters were found, resulting in large 95% confidence limits for the difference between parameters with food and those without food, which were as follows: AUC, 2,092 to 1,441; t\textsubscript{1/2}, 2.61 ± 0.58; Cl/f, 321 ± 167; V/f, 16.2 ± 8.0; MRT, 4.42 ± 1.31; MAT, 0.97 ± 0.68; and compartmental MAT, 0.58 ± 0.30; T\textsubscript{lag}, 1.78 ± 1.23; C\textsubscript{max}, 483 ± 224; and compartmental MAT, 0.69 ± 0.54.

DISCUSSION

In this study, no adverse effects due to artemisinin were observed, which is compatible with extensive clinical experience indicating that artemisinin is a safe drug (1, 11).

There are reasons to suspect that food would have an influence on the pharmacokinetics of artemisinin. Artemisinin is poorly soluble in both water and oil. The milieu of the gastrointestinal tract is watery; this is changed by food intake, and thus a change in bioavailability might be anticipated. Moreover, food intake increases intestinal and liver blood flow (2). However, it is hard to predict the direction of possible changes on the basis of purely theoretical considerations and in vitro data. We did not observe a change in AUC (the parameter

![Graph](image1.png)

FIG. 1. Cumulative amount of artemisinin resorbed after administration with food and without food assuming 100% bioavailability. Curves were calculated by deconvolution (see text). Each symbol represents results for an individual patient.

![Graph](image2.png)

FIG. 2. Artemisinin concentrations and calculated concentration-time course of a one-compartment model with zero-order absorption (●) (data from subject no. 2 [artemisinin without food]) and with first-order absorption (■) (data from subject no. 6 [artemisinin without food]).
most likely to reflect bioavailability in our study design. It is thus unlikely that bioavailability is changed very much by food; this conclusion is strengthened by the fact that none of the other measures of absorption (e.g., absorption rate) shows a change after food intake.

Another important pharmacokinetic factor influenced by food is liver blood flow, and therefore bioavailability and/or systemic clearance (24). Because we found only trace amounts of unchanged artemisinin in urine, enzymatic, and thus most probably, hepatic, metabolism seems to be the main route of elimination of artemisinin. Theoretically, biliary excretion is another possible route of elimination. The increase of changes in liver blood flow on pharmacokinetics depends on the relationship between liver blood flow and the intrinsic capacity of the liver to metabolize a drug (the so-called “intrinsic clearance”) (14). When intrinsic clearance is high compared to liver blood flow, the rate-limiting factor in drug clearance is liver blood flow; changes in liver blood flow are thus expected to have an influence on pharmacokinetic parameters. When intrinsic clearance is low compared to liver blood flow, changes in liver blood flow do not affect clearance. Because we found no differences in the pharmacokinetics of artemisinin after food versus those before food, liver blood flow has no influence on the elimination or the bioavailability of artemisinin. Artemisinin is therefore probably a so-called low-clearance drug. The very large V/f and Cl/f suggest that bioavailability is low. There is substantial accumulation in parasitized erythrocytes (6), and accumulation in other cells with a consequent large apparent V cannot be excluded. Full concentrations in blood cannot be measured accurately with HPLC. The difference between the AUCs on days 1 and 2 is not readily explained. A decrease in Cmax during a multidos regimen was found recently by Hassan Alin et al. without a difference in elimination rate (7). Changing bioavailability was hypothesized. The increase in AUC in our six subjects cannot be explained easily; it should be stressed that the play of chance can have large effects in a study of six subjects.

The results of this study thus show that food intake probably has no substantial influence on the pharmacokinetics of orally administered artemisinin. Interindividual variation is large as is intraindividual variation. With poor bioavailability, small absolute changes of absorption have large relative effects. Because of the wide interindividual variation, the present study lacks the statistical power to detect small differences between the two experimental conditions. Such minor differences are of little practical consequence.

The single 500-mg dose of artemisinin has been shown to initiate a rapid decrease in parasites in patients with uncomplicated P. falciparum infections (3). It is not clear which kinetic parameter is the most significant determinant of therapeutic effect. Preliminary data show that at least peak concentrations should exceed the MIC. Cmax was not affected by food intake. On the other hand, the time that the plasma drug concentration exceeds the MIC may also be significant. The 500-mg dose of artemisinin is sufficient to keep the plasma drug concentrations above the in vitro MIC for P. falciparum for 8 to 10 h. This time above the MIC is not affected by food.

In conclusion, the intake of food has no practical effects on the pharmacokinetics of oral artemisinin.

ACKNOWLEDGMENTS

We thank the following members of the Bach Mai-AMC Research Group on Artemisinin for collaboration with this study: Bui Hien and Pham Song of the Institute for Clinical Research in Tropical Medicine, Bach Mai Hospital, Hanoi, Vietnam; and Els Portier and Jan Butter of the Department of Clinical Pharmacology and Pharmacotherapy, University of Amsterdam, The Netherlands, Amsterdam, The Netherlands.

REFERENCES