Update of CD antigens, 1996

Published in:
The journal of immunology

Citation for published version (APA):
Update of CD Antigens, 1996

The results of the 6th International Workshop on Human Leukocyte Differentiation Antigens were presented on November 10 through 14, 1996, at a conference held in Kobe, Japan. More than 500 laboratories worldwide participated in the evaluation of 1152 antibodies and the characterization of over 190 molecules during a 2-year period. Serologic, molecular, biochemical, histochemical, and functional characterization of the monoclonal antibodies and the structures defined by them was undertaken by dedicated participating laboratories. The cross-lineage blind panels for all monoclonal antibodies, including every CD, every known candidate for CD status, and all monoclonal antibodies of undefined specificity were analyzed by flow cytometry, and results of the blind panel study were subjected to statistical analysis to identify possible antibody clusters. The results obtained by all groups showed almost perfect accordance. Detailed results of these workshop studies will be published separately (1). Concise summaries ("CD guides") for each of the 190 molecules have also been written by experts and are undergoing peer review. In addition, the workshop database has been made accessible on the World Wide Web server to provide identifying information on the cross-lineage blind panels for monoclonal antibodies studied in the workshop and to display and analyze quantitative expression of each molecule on more than 70 cell types used for the cross-lineage blind panel study. Based on these findings, the workshop organizers are pleased to recommend the adoption of 41 new CD clusters and subclusters and the redefinition of 20 previously established

Table 1. CD antigens 1996

<table>
<thead>
<tr>
<th>CD Designation</th>
<th>Common Name/Remarks</th>
<th>Workshop Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD45RC</td>
<td>Restricted epitope of CD45</td>
<td>Non-lineage</td>
</tr>
<tr>
<td>CD52</td>
<td>CDw52</td>
<td>Non-lineage</td>
</tr>
<tr>
<td>CD65</td>
<td>CDw65</td>
<td>Myeloid</td>
</tr>
<tr>
<td>CD65s</td>
<td>Sialylated form of CD65</td>
<td>Myeloid</td>
</tr>
<tr>
<td>CD66f</td>
<td>PMG-1</td>
<td>Myeloid</td>
</tr>
<tr>
<td>CD84</td>
<td>CDw84</td>
<td>B cell</td>
</tr>
<tr>
<td>CD90</td>
<td>CDw90, Thy-1</td>
<td>Adhesion</td>
</tr>
<tr>
<td>CD101</td>
<td>CDw101</td>
<td>Myeloid</td>
</tr>
<tr>
<td>CD114</td>
<td>G-CSFR</td>
<td>Myeloid</td>
</tr>
<tr>
<td>CD109</td>
<td>CDw109</td>
<td>Endothelial</td>
</tr>
<tr>
<td>CD116</td>
<td>CDw116, GM-CSFR</td>
<td>Cytokine</td>
</tr>
<tr>
<td>CD121a</td>
<td>CDw121a, IL-1R; type 1</td>
<td>Cytokine</td>
</tr>
<tr>
<td>CD123</td>
<td>IL-3Rα</td>
<td>Cytokine</td>
</tr>
<tr>
<td>CD124</td>
<td>CDw124, IL-4R</td>
<td>Cytokine</td>
</tr>
<tr>
<td>CD125</td>
<td>IL-5Rα</td>
<td>Cytokine</td>
</tr>
<tr>
<td>CD127</td>
<td>CDw127, IL-7R</td>
<td>Cytokine</td>
</tr>
<tr>
<td>CD130</td>
<td>CDw130, IL-6R-gp130 signal transducer</td>
<td>Cytokine</td>
</tr>
<tr>
<td>CDw131</td>
<td>Common β</td>
<td>Cytokine</td>
</tr>
<tr>
<td>CD132</td>
<td>Common γ</td>
<td>Cytokine</td>
</tr>
<tr>
<td>CD134</td>
<td>OX40</td>
<td>Cytokine</td>
</tr>
<tr>
<td>CD135</td>
<td>Flt3, Flk2</td>
<td>Cytokine</td>
</tr>
<tr>
<td>CDw136</td>
<td>MSP-R, macrophage-stimulating protein-receptor</td>
<td>Cytokine</td>
</tr>
<tr>
<td>CDw137</td>
<td>4-1BB</td>
<td>Cytokine</td>
</tr>
<tr>
<td>CD138</td>
<td>Syndecan-1</td>
<td>B cell</td>
</tr>
<tr>
<td>CD139</td>
<td></td>
<td>B cell</td>
</tr>
<tr>
<td>CD140a</td>
<td>PDGFRα, platelet-derived growth factor receptor</td>
<td>Endothelial</td>
</tr>
<tr>
<td>CD140b</td>
<td>PDGFRβ, platelet-derived growth factor receptor</td>
<td>Endothelial</td>
</tr>
<tr>
<td>CD141</td>
<td>Thrombomodulin</td>
<td>Endothelial</td>
</tr>
<tr>
<td>CD142</td>
<td>Tissue factor</td>
<td>Endothelial</td>
</tr>
<tr>
<td>CD143</td>
<td>ACE, angiotsin-converting enzyme</td>
<td>Endothelial</td>
</tr>
<tr>
<td>CD144</td>
<td>VE-cadherin</td>
<td>Endothelial</td>
</tr>
<tr>
<td>CD145</td>
<td></td>
<td>Endothelial</td>
</tr>
<tr>
<td>CD146</td>
<td>MUC18, S-endo</td>
<td>Endothelial</td>
</tr>
<tr>
<td>CD147</td>
<td>Neurothelin, basigin</td>
<td>Endothelial</td>
</tr>
<tr>
<td>CD148</td>
<td>HPTP-eta, p260 phosphatase</td>
<td>Non-lineage</td>
</tr>
<tr>
<td>CD149</td>
<td>MEM-133</td>
<td>Non-lineage</td>
</tr>
<tr>
<td>CD150</td>
<td>SLAM, IPO-3</td>
<td>Non-lineage</td>
</tr>
<tr>
<td>CD151</td>
<td>PETA-3</td>
<td>Platelet</td>
</tr>
<tr>
<td>CD152</td>
<td>CTLA-4</td>
<td>T cell</td>
</tr>
<tr>
<td>CD153</td>
<td>CD30L, CD30 ligand</td>
<td>T cell</td>
</tr>
<tr>
<td>CD154</td>
<td>CD40L, CD40 ligand, T-BAM</td>
<td>Myeloid</td>
</tr>
<tr>
<td>CD155</td>
<td>PVR, poliovirus receptor</td>
<td>Myeloid</td>
</tr>
<tr>
<td>CD156</td>
<td>ADAM8, MS2 (mouse homologue)</td>
<td>Myeloid</td>
</tr>
<tr>
<td>CD157</td>
<td>BST-1, MO-5</td>
<td>Myeloid</td>
</tr>
<tr>
<td>CD158a</td>
<td>p58.1, MHC class I-specific NK receptors</td>
<td>NK cell</td>
</tr>
</tbody>
</table>

Received for publication January 14, 1997. Accepted for publication January 24, 1997.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 Address correspondence to Dr. Hitoshi Kikutani, Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka, Japan. E-mail address: kikutani@immunol.mcb.osaka-u.ac.jp

2 These summaries will be available on the World Wide Web starting in February 1997 at http://www.ncbi.nlm.nih.gov/produ. For information, send e-mail to prow@nih.gov

3 The database of the workshop is accessible on the World Wide Web at http://mol.genes.nig.ac.jp/hlda-master/. For information, send e-mail to hlda-master@dbj.nig.ac.jp

Copyright © 1997 by The American Association of Immunologists

0022-1767/97$02.00
clusters. The accompanying table summarizes the additions and changes made to the existing CD nomenclature (Table I).

Reference