Mass transfer effects in distillation
Springer, P.A.M.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Notation

\(A_i \)
area for component \(i \), \(\text{m}^2 \)

\(a' \)
interfacial area per unit volume of vapour bubbles, \(\text{m}^2/\text{m}^3 \)

\(a_b \)
vapour-liquid interfacial area per unit volume of dispersion, \(\text{m}^2/\text{m}^3 \)

\(a_d \)
liquid-liquid interfacial area per unit volume of dispersion, \(\text{m}^2/\text{m}^3 \)

\(B_{ij} \)
NRTL parameters; see Table 3.3, K

\(c_i \)
molar concentration of species \(i \), \(\text{mol}/\text{m}^3 \)

\(c_i \)
mixture molar density, \(\text{mol}/\text{m}^3 \)

\(c_{iL} \)
mixture molar density of the liquid phase, \(\text{mol}/\text{m}^3 \)

\(c_{iV} \)
mixture molar density of the vapour phase, \(\text{mol}/\text{m}^3 \)

\(d_b \)
bubble diameter, m

\(d_d \)
droplet diameter, m

\(D_{ij} \)
Fick diffusivity in binary mixture, \(\text{m}^2/\text{s} \)

\(D_{x,ij} \)
Maxwell-Stefan diffusivity for pair i-j, \(\text{m}^2/\text{s} \)

\(D_{x,ij} \)
Maxwell-Stefan diffusivity for pair i-j for the liquid phase, \(\text{m}^2/\text{s} \)

\(D_{y,ij} \)
Maxwell-Stefan diffusivity for pair i-j for the vapour phase, \(\text{m}^2/\text{s} \)

\(E_i \)
component Murphree stage efficiency, dimensionless

\(E_{MV} \)
component Murphree point efficiency, dimensionless

\(F_0 \)
Fourier number, dimensionless

\(G_{ij} \)
NRTL parameters; see Table 3.3, dimensionless

\(g \)
acceleration due to gravity, \(\text{m}/\text{s}^2 \)

\(h \)
distance along froth height, m

\(h_f \)
height of dispersion, m

\(i \)
component index

\([I] \)
identity matrix, dimensionless

\(j \)
component index

\(J_i \)
molar diffusion flux of species \(i \) relative to the molar average reference velocity \(u \), \(\text{mol}/\text{m}^2 \text{s} \)

\(k_{ij} \)
element for matrix of multicomponent mass transfer coefficient, \(\text{m}/\text{s} \)

\([k] \)
matrix of multicomponent mass transfer coefficients, \(\text{m}/\text{s} \)

\([k_x] \)
matrix of multicomponent liquid mass transfer coefficients, \(\text{m}/\text{s} \)

\([k_y] \)
matrix of multicomponent vapour mass transfer coefficients, \(\text{m}/\text{s} \)

\(K_i \)
concentration factor for component \(i \), \(\text{kg}^{-1} \)

\([K_{eq}] \)
diagonal matrix of K-values, dimensionless

\([K_{OV}] \)
matrix of multicomponent overall mass transfer coefficients, \(\text{m}/\text{s} \)

\([K_{OV}] \)
matrix of multicomponent overall mass transfer coefficients, \(\text{m}/\text{s} \)

\(m \)
mass (of molecule), kg

\(N_i \)
molar flux of species \(i \), \(\text{mol}/\text{m}^2 \text{s} \)

\(N_i \)
mixture molar flux, \(\text{mol}/\text{m}^2 \text{s} \)

\([N_{TV}] \)
matrix of overall number of vapour phase transfer units, dimensionless

\([N_{TL}] \)
matrix of overall number of liquid phase transfer units, dimensionless

\([N_{TV}] \)
matrix of overall number of vapour phase transfer units, dimensionless

\(n \)
number of diffusing species, dimensionless

\(n \)
number of species in the mixture, dimensionless

\([Q] \)
\(= \exp[-(N_{TV})] \), dimensionless

\(r_i \)
response factor of the GC for component \(i \), \(\text{m}^2/\text{kg} \)
Notation

$[R_{ij}]$ matrix of inverse mass transfer coefficients, m$^{-1}$ s

S parameter defined in Eq. (4.13), m/s

Sh Sherwood number, dimensionless

t_b liquid-bubble contact time, s

t_c liquid-bubble contact time, s

T temperature, K

u_i velocity of the diffusing species i, m/s

u molar average mixture velocity, m/s

V volume, m3

V_b single bubble rise velocity, m/s

$V_{injection}$ injection volume taken by the GC automatically, m3

x_i liquid composition for component i, dimensionless

y_i vapour composition for component i, dimensionless

z_i mole fraction of component i of the appropriate phase, dimensionless

Greek letters

α_{ij} non-randomness parameter in NRTL equation; see Table 3.3, dimensionless

α_{ij} hold-up of vapour, dimensionless

α_d hold-up of drops, dimensionless

κ_{ij} binary Maxwell-Stefan mass transfer coefficients, m/s

$\kappa_{s,ij}$ binary Maxwell-Stefan liquid mass transfer coefficients, m/s

$\kappa_{v,ij}$ binary Maxwell-Stefan vapour mass transfer coefficients, m/s

ρ_L density of the liquid, kg/m3

μ_L liquid viscosity, Pa s

μ_i molar chemical potential, J/mol

σ surface tension, N/m

τ_V vapour phase residence time, s

τ_V vapour phase residence time, s

τ_{ij} NRTL parameters; see Table 3.3, dimensionless

ξ dimensionless distance along dispersion or column height, dimensionless

Subscript

b referring to a bubble

cal referring to calibration solution

cs referring to calibration sample (for GC)

E referring to conditions entering a specified stage

eq referring to equilibrium

f referring to the froth

i component index

j component index, stage index

k component index

L referring to conditions leaving a specified stage

L_c referring to the continuous liquid phase
Ld referring to the dispersed liquid phase
mix referring to withdrawn column samples
n component index
OV overall parameter referred to the vapour phase
Oy overall parameter referred to the vapour phase
ref referring to reference solution/component
s referring to sample solution (for GC)
solvent referring to solvent to dissolve in
t referring to total mixture
V referring to the vapour phase
x referring to the liquid phase / component index
y referring to the vapour phase

Superscript
L referring to the liquid phase
Lc referring to the continuous liquid phase
Lc,b referring to the continuous liquid phase next to bubble
Lc,d referring to the continuous liquid phase next to drop
Ld referring to dispersed liquid droplet phase
M referring to Murphree
V referring to the vapour phase
* referring to equilibrium state

Dimensionless criteria

\[Sh = \frac{\kappa_{Lc} d_{b}}{D} = \frac{2}{3} \pi^2 \left(\frac{\sum_{m=1}^{\infty} \exp\left(-m^2 \pi^2 Fo\right)}{\sum_{m=1}^{\infty} \frac{1}{m^2} \exp\left(-m^2 \pi^2 Fo\right)} \right) \]

\[Sh_{ij} = \frac{\kappa_{y,ij} d_{b}}{D_{y,ij}} = \frac{2}{3} \pi^2 \left(\frac{\sum_{m=1}^{\infty} \exp\left(-m^2 \pi^2 Fo_{y}\right)}{\sum_{m=1}^{\infty} \frac{1}{m^2} \exp\left(-m^2 \pi^2 Fo_{y}\right)} \right) \]

\[Fo = \frac{4D t}{d_b^2} \]

\[Fo_{ij} = \frac{4D_{y,ij} \pi^2}{d_b^2} \]