Synthesis of Dimeric tetrahydro-beta-carbolines as Bivalent Receptor Ligands. An asymmetric N-Sulfinyl Pictet-Spengler Approach
Gremmen, C.

Citation for published version (APA):
Chapter 3: Approaches to Asymmetric Pictet-Spengler Cyclizations

§ 3.1 Introduction
§ 3.2 The Pictet-Spengler Reaction
 § 3.2.1 Mechanism of the Pictet-Spengler Reaction
 § 3.2.2 Biosynthetic Relevance of the Pictet-Spengler Reaction
§ 3.3 Enantioselective Pictet-Spengler Reactions in the Literature
 § 3.3.1 Introduction
 § 3.3.2 Chiral Nα-Substituted Tryptamines
 § 3.3.3 Pictet-Spengler Cyclizations of Tryptophan Derivatives
§ 3.4 Tryptamine Derivatives with α-Substituents
§ 3.5 Substituents at the Indole Nitrogen
§ 3.6 Cyclizations of Tryptamines with Nα-heteroatoms
 § 3.6.1 N-Nitrogen Substituted Tryptamines
 § 3.6.2 N-Phosphorus Substituted Tryptamines
 § 3.6.3 N-Oxygen and -Sulfur Substituted Tryptamines
§ 3.7 Concluding Remarks
§ 3.8 Acknowledgements
§ 3.9 Experimental Details
References and Notes

Chapter 4: Enantiopure Tetrahydro-β-carbolines via N-Sulfinyl Pictet-Spengler Reactions

§ 4.1 Introduction
§ 4.2 Chiral Sulfinyl Groups in Organic Synthesis
§ 4.3 Racemic N-Sulfinyl Pictet-Spengler Cyclizations
 § 4.3.1 Optimization of the Reaction Conditions
 § 4.3.2 Cyclization under Lewis Acidic Conditions
§ 4.4 Variation of the Sulfinyl Group
§ 4.5 Enantiopure Tetrahydro-β-carbolines
 § 4.5.1 Synthesis of Enantiopure Nα-p-Tolylsulfinyl Tryptamine
 § 4.5.2 N-Sulfinyl Pictet-Spengler Reactions
 § 4.5.3 Enantiopure 1-Benzyltetrahydro-β-carbolines
§ 4.6 Concluding Remarks
§ 4.7 Acknowledgements
§ 4.8 Experimental Details
References and Notes
Chapter 5: Enantiopure Tetrahydroisoquinolines via N-Sulfanyl Pictet-Spengler Reactions

§ 5.1 Introduction
§ 5.2 Biological Activity of Tetrahydroisoquinolines
§ 5.3 Asymmetric Approaches to Tetrahydroisoquinolines
§ 5.4 An N-Sulfanyl Pictet-Spengler Approach to Tetrahydroisoquinolines
§ 5.5 Synthesis of Enantiopure Tetrahydroisoquinolines
§ 5.6 Synthesis of (+)- and (-)-Salsolidine
 § 5.6.1 Literature Approaches to Enantiopure Salsolidine
 § 5.6.2 Synthesis of (+)- and (-)-Salsolidine by N-Sulfanyl Pictet-Spengler cyclization
§ 5.7 Concluding Remarks
§ 5.8 Experimental Details
References and Notes

Chapter 6: The N-Sulfanyl Pictet-Spengler Reaction: Applications and Mechanism

§ 6.1 Introduction
§ 6.2 N-Sulfanyl Pictet-Spengler Cyclizations with Functionalized Aldehydes
 § 6.2.1 Tetrahydro-β-carbolines with Aminogroups in the C1-Substituent
 § 6.2.2 Enantiopure Tetrahydro-β-carbolines with C1-Alkenyl Substituents
§ 6.3 Synthesis of Enantiopure Alkaloids and Derivatives
§ 6.4 Approaches to Enantiopure Tetrahydro-β-carboline Dimers
 § 6.4.1 N-Sulfanyl Pictet-Spengler Reactions with Dialdehydes
 § 6.4.2 Towards C1-C5-Linked Tetrahydro-β-carboline Dimers
§ 6.5 The Mechanism of the N-Sulfanyl Pictet-Spengler Reaction
§ 6.6 Concluding Remarks
§ 6.7 Acknowledgements
§ 6.8 Experimental Details
References and Notes

Summary
Samenvatting
List of Abbreviations
Dankwoord