Accelerated autoantibody clearance by intravenous immunoglobulin therapy: studies in experimental models to determine the magnitude and time course of the effect
Bleeker, W.K.; Teeling, J.L.; Hack, C.E.

Published in:
Blood

DOI:
10.1182/blood.V98.10.3136

Citation for published version (APA):
Accelerated autoantibody clearance by intravenous immunoglobulin therapy: studies in experimental models to determine the magnitude and time course of the effect

Wim K. Bleeker, Jessica L. Teeling, and C. Erik Hack

Recently, it has been postulated that the beneficial effect of intravenous immunoglobulins (IVIGs) in antibody-mediated autoimmune disorders is based on accelerated catabolism of autoantibodies. In the current study, in vivo experiments were performed with mice in which autoantibody production was mimicked by continuous infusion of monoclonal antibodies. In this model, a single dose of IVIG reduced the plasma concentrations of the infused immunoglobulin (Ig)G1 monoclonal antibody (mAb) by approximately 40% after 3 days, whereas the concentration of an IgA mAb was not affected. To extrapolate these findings to humans, a computational model for IgG clearance was established that accurately predicted the time course and magnitude of the decrease in IgG plasma levels observed in mice. Adapted for humans, this model predicted a gradually occurring decrease in autoantibody levels after IVIG administration (2 g/kg), with a maximum reduction of approximately 25% after 3 to 4 weeks and a continued decrease of several months. In conclusion, a single high dose of IVIG induces a relatively small but long-lasting reduction of autoantibody levels by accelerated IgG clearance. This mechanism has clinical relevance in the sense that it can fully explain, as the sole mechanism, the gradual decrease in autoantibody levels observed in several patient studies. However, in some clinical studies, larger or more rapid effects have been observed that cannot be explained by accelerated clearance. Hence, IVIG can also reduce autoantibody levels through mechanisms such as down-regulation of antibody production or neutralization by anti-idiotypic antibodies. (Blood. 2001; 98:3136-3142)

© 2001 by The American Society of Hematology

Introduction

Immunoglobulin preparations, originally developed for the treatment of patients with agammaglobulinemia, have also been successfully applied in a number of inflammatory and autoimmune diseases, such as immune thrombocytopenic purpura, Kawasaki disease, and Guillain-Barré syndrome. Several mechanisms of action of intravenous immune globulin (IVIG) therapy in the latter disorders have been proposed—blocking of Fc receptors on phagocytes, inhibition of complement deposition, modulation of cytokine production, neutralization of circulating autoantibodies by anti-idiotypic antibodies, and down-regulation of autoantibody production by anti-idiotypic antibodies interacting with B cells. No conclusive evidence exists, however, for any of these mechanisms, and other modes of action are still being proposed. In recent years, several investigators have suggested that the therapeutic effect of IVIG may be caused by an effect on immunoglobulin (Ig)G catabolism, leading to a reduction of autoantibody titers.

More than 30 years ago, it was found in several species that the clearance rate of IgG greatly depends on its plasma concentration. At low concentrations, the plasma half-life is approximately 10 times longer than at high concentrations. Brambell et al. proposed in 1964 a hypothesis to explain this phenomenon, stating that IgG is endocytosed in an aspecific way. Part of this endocytosed IgG then binds to receptors in the wall of the endocytotic vesicles to be protected from degradation and is returned to the circulation (Figure 1). In this model, the protecting receptors become saturated at high plasma concentration, resulting in the degradation of a larger proportion of the endocytosed IgG. Recently, experiments by several investigators with β2-microglobulin knock-out mice provided solid support for the existence of such a protecting receptor.

Because β2-microglobulin is part of the neonatal Fc receptor (FcRn), these mice lacked functional FcRn. It was observed that the knockout mice had low IgG levels in combination with a normal synthesis rate and a shortened plasma half-life, whereas IgM and IgA levels were unaffected. These findings indicated that, in addition to a role in the transfer of maternal IgG across the rodent neonatal gut, the fetal yolk sac, and the human placental barrier, FcRn plays a role in IgG catabolism and probably is the protecting receptor in the Brambell model.

The identification of FcRn as a protecting receptor has renewed interest in the mechanism of IgG clearance and, as mentioned above, has led to the hypothesis that the effect of high-dose IVIG in autoimmune-mediated disorders is based on the saturation of FcRn, leading to increased catabolism of IgG, including that of autoantibodies. However, without knowing the extent of reduction of autoantibody levels affected by this mechanism, it is difficult to decide whether this mechanism has any clinical significance in relation to the overall therapeutic effects of IVIG therapy.

The aim of the current study was to determine the time course and the magnitude of the decrease of autoantibody levels by IVIG therapy. This was done first by studying the IVIG effect on immunoglobulin plasma concentrations in a mouse model, in...
Continuous infusion and determined the effect of subsequent IVIG administration on their plasma concentrations as described above. Monoclonal antibodies were continuously infused using an osmotic pump implanted in the peritoneal cavity (Alzet micro-osmotic pump, model 1002; Alza, Palo Alto, CA). Pumps with a pumping rate of 0.24 μL/h for a duration of 14 days were filled with 100 μL mixture containing 0.3 mg/mL mouse IgG1 mAb to human Cl inhibitor and approximately 0.5 mg/mL mouse IgA mAb (in saline) to human interleukin-6 (IL-6). An intravenous bolus dose of 35 μL infused per mouse was given at the beginning of infusion to obtain a steady-state plasma concentration more quickly.

IVIG was intravenously administered at day 4 as a bolus dose of 1.8 g/kg body weight IgG. Animal experiments were approved by the local ethics committee and were governed by the pertinent national legislation.

Immunoglobulin preparations

IVIG, a solution of purified human IgG (60 mg/mL), was prepared from pooled human donor plasma at the Center Laboratory of the Blood Transfusion Service (CLB) (Immunoglobulin L.V.; CLB, Amstelveen, The Netherlands). Mouse IgG1 mAb to human C1 inhibitor (RII) was affinity purified using protein G-Sepharose. A mouse IgA mAb to human IL-6 (mAb 8-α) was purified from culture supernatant using size exclusion chromatography to isolate monomeric IgA. Both monoclonal antibodies have been characterized and produced in our department.

Assays for immunoglobulin (sub)classes and albumin in plasma

Mouse IgG1, IgG2a, IgG3, and IgM plasma concentrations were measured using enzyme-linked immunosorbent assay (ELISA). Capturing rat monoclonal antibodies to mouse IgG1, IgG2a, IgG3, or IgM (LO-MG1, LO-MG2a, LO-MG3, and LO-MM; Caltag, Burlingame, CA) were coated to 96-well Nunc Maxisorp plates (Nunc Brand Products, Roskilde, Denmark) by overnight incubation at room temperature at a concentration of 1 to 2 μg/mL in 0.1 M carbonate–bicarbonate, pH 9.6. Plates were washed twice in phosphate-buffered saline (PBS)–0.02% (wt/vol) Tween 20 (PBS-Tween). Plasma samples were appropriately diluted in PBS containing 2% (vol/vol) cow milk. One hundred microliters of each dilution was incubated for 1 hour at 4°C, and plates were gently shaken. Plates were washed 5 times in PBS-Tween and were incubated with biotinylated rat monoclonal anti–mouse κ light chain (226-BT; CLB) as the detecting antibody, diluted 1:2000 in PBS containing 2% (vol/vol) cow milk, for 1 hour at room temperature. Plates were then washed 5 times in PBS-Tween and incubated with streptavidin–horseradish peroxidase (HRP; Amersham Life Science, Buckinghamshire, United Kingdom), diluted 1:1000 in PBS containing 2% cow milk, for 30 minutes at room temperature. Finally, the plates were developed with 3,3′,5,5′-tetramethylbenzidine (0.1 mg/mL in 0.11 M sodium acetate, pH 5.5, 0.003% H2O2), and the reaction was stopped by the addition of H2SO4. Absorbance was measured at 450 nm. Concentrations were expressed as percentages of those in normal mouse serum (CLB).

Total mouse IgG concentrations in plasma were measured in a similar ELISA with monoclonal anti–mouse κ light chain 226 as the capturing antibody and biotinylated anti–mouse κ light chain (226-BT) as the detecting antibody, using purified mouse IgG (Sigma, St Louis, MO) as reference.

Plasma concentrations of mouse IgG1 mAb to human C1 inhibitor (RII) was measured in an ELISA with purified human C1 inhibitor (CLB) as the capturing protein. Biotinylated rat mAb to mouse IgG1 (Callag) was used as conjugate; this was followed by incubation with streptavidin–poly–HRP (CLB). Plasma concentrations of mouse IgA mAb to human IL-6 (mAb α-α) was measured in a similar ELISA with recombinant human IL-6 (CLB) as the capturing protein. Biotinylated rat mAb to mouse IgA (Callag) was used as conjugate. Plasma concentrations of both mAbs were expressed as percentage of concentration in the infused antibody mix.

All above-mentioned ELISAs for mouse immunoglobulins were unaffected by the presence of human IVIG in the samples, ruling out the presence of anti-idiotypic antibodies to the RII and mAb α-α in IVIG. Human IgG concentrations in mouse plasma were determined in an ELISA with mouse mAb anti–human IgG (MoHu16; CLB) as the capturing

Materials and methods

In vivo clearance studies in mice

In the first series, we determined the effect of high-dose IVIG on endogenous IgG1, IgG2a, IgG3, IgM, and albumin plasma concentrations. Experiments were performed in C57BL/6 mice, with body weights between 25 and 35 g (Harlan CBP, Zeist, The Netherlands). Mice were anesthetized with halothane for intravenous injections and blood sampling. IVIG was administered to mice at the beginning of infusion to obtain a steady-state plasma concentration more quickly.

In the second series, we created a steady-state plasma level of specific mouse IgG1 and IgA mAbs (without affinity for mouse antigens) by continuous infusion and determined the effect of subsequent IVIG administration.
shows the sigmoid curve fitted to the data points: FCRivp, mouse IgG plasma concentrations and half-lives as brief as 1.5 days. Figure 2
tumors or receiving intraperitoneal injections of human IVIG and with high
total body half-lives for IgG up to 9 days and in mice with plasma cell
gerf-free and low-pathogen mice with low IgG plasma concentrations and
mg/mL to 50 mg/mL.12-15 Notably, these studies include experiments in
investigators who measured the disappearance of tracer doses of radiola-
tion. For mice, the relation between plasma IgG concentration and
elimination of IgG occurs from the plasma compartment according to a
nonlinear process, with rate constants depending on the plasma concentra-
tion. For mice, the relation between plasma IgG concentration and
fractional clearance rate (FCR) was derived from data published by several
studied in humans with widely varying IgG plasma concentrations,
several models.

Both curves were fitted to data published by Humphrey and Fahey,12
Fahey and Robinson,13 Sell and Fahey,14 and Junghans and Anderson15 for mice and
by Waldmann and Strober6 for humans.

Computational model

Figure 1B shows the 2-compartment pharmacokinetic model adopted for
the simulation. The following assumptions were made: (1) produced and
infused IgG are immediately mixed in the plasma compartment and
distributed by approximately 50% into the interstitial space11; (2) the
plasma volume is 40 mL/kg body weight; (3) the exchange between the
plasma and the interstitial pool is a linear process with rate constants
(k1 = k2) of −0.087 for mice and −0.014 for humans; and (4) the
elimination of IgG occurs from the plasma compartment according to a
nonlinear process, with rate constants depending on the plasma concentra-
tion. For mice, the relation between plasma IgG concentration and
fractional clearance rate (FCR) was derived from data published by several
investigators who measured the disappearance of tracer doses of radiola-
beled IgG in mice with IgG plasma concentrations ranging from 0.12
mg/mL to 50 mg/mL.12-15 Notably, these studies include experiments in
germ-free and low-pathogen mice with low IgG plasma concentrations and
total body half-lives for IgG up to 9 days and in mice with plasma cell
tumors or receiving intraperitoneal injections of human IVIG and with high
IgG plasma concentrations and half-lives as brief as 1.5 days. Figure 2
shows the sigmoid curve fitted to the data points: FCRivp, mouse = 0.055 + 0.79/
[1 + e(0.9 − [IgG]pl)/5)]. IgG plasma concentration ([IgG]pl) is expressed in
milligrams per milliliter mg/mL, FCRivp is the fraction of the intravascular pool
eliminated in 24 hours; it relates to the FCR of the total body pool as
FCRivp = FCRtP/fraction of IgG intravascular. FCRtP = −ln2/τ, where τ is
the total body half-life, or elimination half-life, in days.

For humans, the relation between IgG plasma concentration and FCRtP
was derived from data published by Waldmann and Strober,6 who reviewed
several studies in humans with widely varying IgG plasma concentrations,
including patients with hypogammaglobulinemia and myeloma, in whom
IgG catabolism was determined by measuring the disappearance of
radiolabeled IgG from plasma. Figure 2 shows the sigmoid curve fitted to
the data points: FCRtP, human = −0.3 + 0.43/[1 + e(−19 − [IgG]pl)/18)]. For
humans, the elimination half-life increases to values between 30 and 70
days at very low IgG plasma concentrations, whereas at concentrations
greater than 30 mg/mL, the half-life reaches a lower limit of approximately
11 days. For the simulations, all IgG transfers and subsequent concentration
changes were calculated in discrete time steps using an Excel (Microsoft)
worksheet. For mice and humans the time steps were 0.1 and 1 hour,
respectively. The fate of endogenous and infused IgG was followed
separately, and the sum of both determined the FCR. For each time step, a
fraction from the plasma pool according to k1 and the duration of the time
interval was transferred to the interstitial pool, and a fraction from the
interstitial pool according to k2 was transferred to the plasma pool.
Furthermore, the FCR at the current IgG concentration was calculated, and
a fraction of the plasma pool according to that FCR and the duration of the
time interval were eliminated. IgG production rates, expressed as mg/kg−1
per interval, were chosen in accordance with the desired plasma concentra-
tion. IVIG was ‘infused’ as a bolus within a single time interval.

Statistical analysis

In vivo data are presented as mean ± SD. Results were compared with an
unpaired or a paired Student t test, as indicated, using GraphPad Prism
(GraphPad Software).

Results

In vivo experiments in mice: effect of IVIG on endogenous immunoglobulin concentrations

Administration of 1.8 g/kg IVIG to mice resulted in an increase of the
total IgG plasma concentration (human plus mouse IgG) from
approximately 3 to 33 mg/mL (Figure 3). Plasma concentrations of
mouse IgG1 and IgG3 showed a gradual decrease to approximately
60% of baseline after 3 days (Figure 3). For IgG2a, the decrease
was not significant because of a large standard deviation in the
results. IgM and albumin concentrations showed a transient
decrease after IVIG administration but returned to normal values

Figure 3. In vivo effects of IVIG infusion on endogenous immunoglobulin levels in
mice. IVIG was given at a dose of 1.8 g/kg body weight (black dots). Control
animals (open circles) received an equivalent volume of saline. The 6 panels show
total IgG plasma concentration (in mg/mL), endogenous levels of mouse IgG1, IgG2a,
IgG3, and albumin and IgM (expressed as a percentage of the pre-infusion
levels), respectively. The time scale is indicated below the lower 2 panels. Data
represent mean ± SD (n = 4). **P < .01 and *P < .05 for difference IVIG and control
group (t test).
after 3 days. Decreased albumin concentration indicated that transient plasma dilution occurred in the IVIG-treated mice, which could, at least partly, have accounted for the decreased IgG concentrations in the first 24 hours. This dilution effect was not significant in the control mice receiving saline, which has no oncostic effect. After 48 hours, albumin concentrations were back to baseline, indicating that the 40% decrease in endogenous IgG1 and IgG3 concentrations, 3 days after IVIG, was unrelated to dilution (Figure 3).

In vivo experiments in mice: effect of IVIG on plasma levels of infused monoclonal antibodies

To obtain an experimental model that mimics production of autoantibodies in vivo, we continuously infused a mixture of IgG1 and IgA mAbs in mice by means of an implanted osmotic pump. We choose mAbs without affinity for mouse antigens to avoid binding to epitopes in vivo, which could make interpretation of the results difficult. An intravenous bolus dose (35 μL), followed by continuous infusion of the mAbs at a rate of 0.24 μL/hour, resulted after 3 days in steady-state plasma concentrations for IgG1 and IgA of 1.2% and 0.2%, respectively, of the concentration in the infusate. This difference in relative concentration is compatible with the difference in plasma half-life, which is reported to be much shorter for IgA.8 Figure 4 shows the effect of a single intravenous dose of 1.8 g/kg IVIG on the plasma levels of the mAbs, 4 days after the start of the infusion. The plasma concentration of the IgG1 mAb decreased by approximately 40%, whereas, as expected, the concentration of the simultaneously infused IgA mAb remained unchanged.

Control simulations

To check whether the method of calculation was accurate, we first simulated for mice and humans the clearance of tracer doses of IgG at different endogenous IgG plasma concentrations (ranging from 1 to 60 mg/mL). Figure 5 shows the curves generated for humans. The t1/2 calculated from terminal parts of the double exponential curves ranged from approximately 50 days at an IgG concentration of 1 mg/mL to approximately 11 days at concentrations greater than 60 mg/mL, exactly as was expected from the relation between FCR and IgG plasma concentration used in this model.6 Furthermore, the intercepts of the terminal parts of the curves with the y-axis (time 0) were at plasma concentrations between 40% and 50% of the initial value after administration, indicating the expected redistribution of 50% to 60% of the dose into the interstitial space. For mice, the terminal parts of the double exponential curves (not shown) also showed the expected t1/2, ranging from 7 days at an IgG concentration of 1 mg/mL to 1.8 days at concentrations greater than 30 mg/mL.

Simulation of the IVIG effect in mice

Figure 6 shows the simulated effect of intravenous administration of a single dose of IVIG on endogenous immunoglobulin concentrations in mice. In this simulation, the IgG production was set at 50 mg/kg per day, giving a basal IgG plasma concentration of 4.2 mg/mL, which is a normal concentration for laboratory mice.14 Administration of a single dose of 1.8 g/kg IVIG caused an increase in total IgG plasma concentration to 50 mg/mL, followed by a biphasic decline. The FCR increased more than 2-fold for several

Figure 5. Simulation of the clearance of intravenously injected tracer doses of IgG at different IgG plasma concentrations in humans. Simulation concerns the administration of IgG at time zero, at a dose that did not increase the plasma IgG concentration. Plasma concentration of tracer IgG is expressed as a percentage of the concentration immediately after administration. The inset table shows the basal IgG plasma concentrations in milligrams per milliliter (IgG) used in the simulations shown and the half-lives in days (t1/2) of the tracer IgG, calculated from the terminal parts of the generated curves.

Figure 6. Simulation of the effect of IVIG infusion (1.8 g/kg body weight) in mice. The figure shows the effect on the total IgG (endogenous plus exogenous) plasma concentration (lower curve), the FRC (percentage of intravascular pool per day, line line) and the endogenous IgG concentration (percentage of control, upper bold line).
days, resulting in a gradual decrease in endogenous IgG concentration over several days and reaching a minimum after 3 to 4 days at approximately 65% of control, which corresponded well to the in vivo effects observed in mice (Figures 3, 4).

As expected, the magnitude of the effect of IVIG on endogenous IgG depended to some degree on the basal IgG concentration because at higher basal concentrations the FCR was already closer to the maximum value. For example, in simulations with a basal level of 1 mg/mL (production rate, 9 mg/kg per day), a dose of 1.8 g/kg induced a 40% decrease in endogenous IgG, whereas at 10 mg/mL (production rate, 190 mg/kg per day), the decrease was only 20%.

Simulation of the IVIG effect in humans

Figure 7 shows the simulated effect of intravenous administration of 2 g/kg IVIG to humans on IgG plasma concentration, FCR, and relative autoantibody levels. In this simulation, the values for k1, k2, and FCR are adapted for humans. Basal IgG production was set at 17 mg/kg per day, giving a basal IgG plasma concentration of 7 mg/mL. Autoantibody production is assumed to remain unchanged by IVIG administration. Administration of 2 daily doses of 1 g/kg IVIG (upper panel) caused a rise in plasma concentration to approximately 40 mg/mL, followed by a biphasic decline. FCR showed a sustained increase for several weeks, with initial doubling of the clearance rate. Autoantibody levels (endogenous IgG concentration) gradually decreased over several weeks, reaching a minimum after 3 to 4 days at approximately 75% of the pre-infusion level. The effect lasted more than 7 weeks. When IVIG was simulated to be given as 5 daily doses of 0.4 g/kg (lower panel), initial IgG concentrations were somewhat lower, but the magnitude of the effect on autoantibody levels was comparable.

Discussion

In the in vivo experiments in mice, we first studied the effect of IVIG administration on endogenous immunoglobulin concentrations. We used human IVIG because it already had been observed by other investigators that human IgG has the same clearance characteristics in mice as murine IgG. After a single high dose of IVIG, we observed a reduction of 40% in endogenous IgG1 and IgG3 levels that occurred gradually and could not be ascribed to plasma dilution after day 2. Only minimal changes were observed in mouse IgG2a, which is in accordance with the findings of Israel et al, who investigated subclass differences in the concentration dependency of clearance. To better mimic the condition of a patient producing autoantibodies, we next continuously infused mAbs and investigated the effect of IVIG on their plasma levels. We added an IgA mAb to the infusate as an internal control, because Ghetie et al found that FcRn plays no protecting role in its clearance. They also observed that IgA has a similar half-life in both β2-microglobulin knockout mice and wild-type mice—ie, 1 day—whereas the half-life of IgG was 0.8 days in β2-microglobulin knock-out mice and 4 days in wild-type mice. In other words, the clearance rates of IgG1 and IgA are the same after complete elimination of FcRn function. In our experiments, the steady-state plasma concentration of IgA was much lower than that of IgG1, which is in accordance with the reported difference in clearance rates. After a single high dose of IVIG, the IgG1 mAb levels showed a reduction of approximately 40%, whereas, as expected, the IgA levels were unaffected.

Simulations for mice accurately predicted the time course and magnitude of observed in vivo effects, both regarding the endogenous IgG (Figure 3) and the infused IgG1 mAb (Figure 4), which supported the validity of our computational model. It should be noted that in our in vivo experiments, plasma levels of endogenously produced IgG were reduced to the same extent as IgG1 mAb infused at a fixed rate. This supports the idea that there is no immunoregulatory feedback on IgG synthesis, and it justifies the assumption in our pharmacokinetic model that IgG production is constant for a patient, independent of IgG concentration. A conspicuous finding was the extended time course of the IgG reduction after a single dose of IVIG. Further analysis of our model revealed that the critical element in this respect is the FCR–concentration relation, which was based on data from the literature. Other elements, such as the rate of equilibration between plasma and interstitial pool, had only a minor influence on the simulated effects. The slow kinetics of the effect prevents steady-state conditions from being reached after a single IVIG dose and may explain why the effect is smaller than might be intuitively expected.

Because IgG autoantibodies are expected to have the same clearance behavior as all other plasma IgG, our simulations also predict the effect of IVIG on the level of freely circulating IgG autoantibodies. We do not want to speculate about whether a 25% decrease in autoantibody level could have pathophysiological significance and will limit the discussion to whether the mechanism of accelerated clearance can explain the IVIG-induced reduction in autoantibody titers observed in clinical patients. We compared the predictions from our simulation with clinical data from patient.
IgM autoantibodies would also be reduced by IVIG therapy. Yet, reduction in antibody levels, such as neutralization by anti-idiotypic antibodies in IVIG, might not be the case; on the other hand, findings from several clinical reports on large and very long-term studies cast doubt on the possibility that the lower autoantibody levels observed in some other clinical studies cannot be explained by accelerated clearance, suggesting that IVIG may also reduce antibody levels by other mechanisms. A rapid decrease in autoantibodies is compatible with direct neutralization through binding to anti-idiotypic antibodies in IVIG, after which they will escape detection in an assay. Gradually occurring, long-lasting, complete disappearance may point to a down-regulation of antibody production, such as, for example, an effect on B cells that could possibly be affected by Fas-mediated induction of apoptosis, or interaction of anti-idiotypic antibodies in IVIG with inhibitory FcRRIIB-receptor, or in some way through up-regulation of this inhibiting Fcy receptor on different cell types. Because the different proposed mechanisms for IVIG-induced reduction of autoantibody levels do not seem to be mutually exclusive, we conclude that FcRn saturation will contribute as an independent mechanism in all cases of IgG autoantibodies.

In summary, our study shows that IVIG therapy induces a relatively long-lasting, but modest, reduction of autoantibody levels by accelerated IgG clearance. This mechanism has clinical relevance in the sense that it can explain, as the sole mechanism, the gradual 20% to 40% decrease in autoantibody levels observed in several patient studies. However, larger or more rapid effects observed in some other clinical studies cannot be explained by accelerated clearance, suggesting that IVIG can also reduce autoantibody levels through other mechanisms.

Acknowledgment

We thank Mr Theo Jansen-Hendriks for excellent technical assistance.

References

Simister NE. Increased clearance of IgG in mice that lack beta 2-microglobulin: possible protective role of FcRn. Immunology. 1996;89:573-578.

15. Junghans RP, Anderson CL. The protection receptor for IgG catabolism is the μ2-microglobu-