Spectroscopic analysis of erbium-doped silicon and ytterbium-doped indium phosphide

de Maat-Gersdorf, I.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Consequences of crystal-field symmetries 1
 1.1 Outline of this thesis 1
 1.2 Introduction to the theory 3
 1.3 Many-electron wave functions, multiplets 5
 1.4 Spin–orbit interaction 8
 1.5 Crystal fields
 1.5.1 T\(_d\) – Symmetric potential 11
 1.5.2 Matrix elements for f functions 16
 1.5.3 Perturbation Hamiltonian due to a cubic crystal field 18
 1.5.4 Calculation of the matrix elements for the multiplet level \(^4I_{15/2}\) 20
 References 27

2 Photoluminescence measurements on erbium-doped silicon 29
 2.1 Introduction 29
 2.2 Experimental method 33
 2.3 Experimental results 34
 2.4 Discussion
 2.4.1 Ligand oxygen atoms 36
 2.4.2 Phonon replicas 38
 2.4.3 Crystal-field analysis 41
 2.5 Conclusion 43
 References 43

3 Photoluminescence of erbium-doped silicon: Improvements to the crystal-field theory 45
 3.1 Introduction 45
 3.2 Transformation of \(x\) and \(W\) 47
 3.3 Selection rules 50
 3.4 Identification of the "five" lines from among the measured ones 51
 3.5 Perturbations of the \(^4I_{15/2}\) level due to the \(^4I_{13/2}, ^4I_{11/2}\) and \(^4I_{9/2}\) multiplet levels 53
3.6 The Tang model
3.7 Perturbations of the $4f^{11} 4f_{15/2}$ multiplet due to the $4f^{10} 6s$ levels

References

4 Zeeman splitting factor of the Er$^{3+}$ ion in a crystal field

4.1 Introduction
4.2 Method of calculation
 4.2.1 Spin–orbit interaction
 4.2.2 Crystal field
 4.2.3 Magnetic field
4.3 Cubic symmetry
 4.3.1 Energy
 4.3.2 g Value
4.4 Trigonal and tetragonal symmetry
 4.4.1 Energy
 4.4.2 g Value
4.5 Orthorhombic symmetry
 4.5.1 Energy
 4.5.2 g Value
4.6 Conclusions

References

5 Energy levels of ytterbium in indium phosphide

5.1 Introduction
5.2 Energy levels
 5.2.1 Spin–orbit interaction
 5.2.2 Crystal-field interaction
 5.2.3 Transition energies
5.3 Energy level ordering
 5.3.1 Photoluminescence intensity
 5.3.2 Photoluminescence temperature dependence
 5.3.3 Photoluminescence hydrostatic-stress dependence
 5.3.4 Magnetic resonance
 5.3.5 Coordination
5.4 Conclusions

References
6 Zeeman studies of the 4f intrashell transitions of ytterbium in indium phosphide

6.1 Introduction 99
6.2 Experimental method 101
6.3 Theoretical analysis of the Zeeman splitting 101
6.4 Selection rules and consequences 106
6.5 Experimental results and discussion 109
 6.5.1 State I 110
 6.5.2 State II 114
6.6 Conclusion 118
References 118

Summary 119

Samenvatting 121

Populaire samenvatting 123

Dankwoord 125