Hydrogen interaction with impurities in silicon
Huy, P.T.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction
1.1 Emerging role of hydrogen in semiconductor technologies 1
1.2 Fundamental research on hydrogen in semiconductors 2
1.3 This thesis 4
References 5

2 Characterization of hydrogen and hydrogen-related centers in crystalline silicon by magnetic resonance spectroscopy 7
2.1 Introduction 8
2.2 Isolated hydrogen 9
2.3 Hydrogen–vacancy centers 14
2.4 Hydrogen–chalcogen centers 20
2.5 Hydrogen–transition metal centers 23
References 29

3 Hydrogen passivation of the selenium double donor in silicon 33
3.1 Introduction 34
3.2 Sample preparation and experimental apparatus 35
3.3 Results 36
3.3.1 EPR spectra Si-NL60 and Si-NL61 36
3.3.2 Hydrogen identification 38
3.3.3 Selenium identification 45
3.3.4 Spin-Hamiltonian analysis 47
3.4 Discussion 48
3.4.1 Defect geometry 48
3.4.2 g Tensor 49
3.4.3 Hyperfine interaction tensor 52
3.4.4 Quadrupole interaction tensor

3.5 Conclusions

References

4 Magnetic–resonance investigation of gold and gold–hydrogen complexes in silicon

4.1 Introduction

4.2 Experiment

4.3 Magnetic resonance spectra

4.3.1 EPR spectrum Si-NL62

4.3.2 EPR spectrum Si-NL63

4.3.3 EPR spectrum Si-NL64

4.4 Discussion

4.4.1 Center Si-NL62

4.4.2 Center Si-NL63

4.4.3 Center Si-NL64

4.5 Conclusions

References

5 EPR spectroscopy of Pt–H\textsubscript{3} and Pt–Fe\textsubscript{3} complexes in hydrogenated silicon

5.1 Introduction

5.2 Sample preparation and EPR spectrometer

5.3 Experimental results

5.4 Discussion

5.4.1 Si-NL65 center

5.4.2 Si-NL66 center

5.5 Conclusions

References

6 Hydrogen passivation of palladium in silicon

6.1 Introduction

6.2 Experiments

6.3 Results and discussions
CONTENTS

6.4 Conclusions

References

7 Silver–gold and gold-related centers in silver-doped silicon

7.1 Introduction

7.2 Samples and spectrometer

7.3 Results and discussion

7.3.1 The Si-NL67 spectrum of the Ag–Au–Au center

7.3.2 New appearance of the Si-NL50 spectrum

7.4 Conclusions

References

Summary

Samenvatting

Acknowledgments