Hydrogen interaction with impurities in silicon
Huy, P.T.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 4

MAGNETIC-RESONANCE INVESTIGATION OF GOLD AND GOLD-HYDROGEN COMPLEXES IN SILICON

ABSTRACT

Three paramagnetic centers related to gold have been observed in gold-doped and gold-doped hydrogenated silicon by magnetic resonance. One spectrum, labeled Si-NL62, corresponding to a center with monoclinic-I symmetry, presents a fourfold splitting due to the hyperfine interaction with one gold atom and further hyperfine interaction with two silicon nearest-neighbor atoms. After being diffused with hydrogen in a wet atmosphere of water vapor at 1300 °C for about 30 minutes, a second electron paramagnetic resonance spectrum, labeled Si-NL63, is detected, also of the monoclinic-I symmetry. The spectrum of the center is characterized by a complex hyperfine structure, in which, depending on magnetic field orientation, a sevenfold splitting with the intensities 1:2:3:4:3:2:1, a fourfold splitting 4:4:4:4, and other more arbitrary structures are observed. Extra small splitting is observed in the sample diffused with deuterium, indicating hydrogen involvement in the microscopic structure of the Si-NL63 center. Under band-gap illumination the third center of a one-gold–two-hydrogen complex is observed. The center, labeled Si-NL64, has the low triclinic symmetry and features the hyperfine interactions with one gold and two nearly equivalent hydrogen atoms. This results in a (1:2:1):(1:2:1):(1:2:1):(1:2:1) structure of each group of spectral lines. Spin-Hamiltonian parameters for the three spectra are determined and microscopic models are discussed.

"If you worry about what might be, and wonder what might have been, you will ignore what is."

- Dr. Robert Anthony -
4.1 Introduction

Transition metals are important impurities in semiconductors, including silicon. If present in the materials, the transition metals create deep electronic levels within the band gap of the semiconductor, as a result of which the properties of the materials or devices are changed dramatically.

Gold in silicon is one of the most studied defects, due to its technological importance as carrier lifetime controller and its vital role in the understanding of the electronic properties of transition metals in a covalent host crystal. The amphoteric behavior of gold in silicon was clearly established [4.1-4.3]. Substitutional gold in silicon is known to introduce a deep acceptor level at $E_c - 0.54$ eV and a donor level at $E_v + 0.35$ eV [4.4-4.6].

Transition metals are easily involved in impurity-pair or complex formation and in precipitation processes. A large variety of centers resulting from interaction of hydrogen with the transition metals Ti, Co, Ni, Cu, Ag, Pd, and Pt was observed using deep-level transient spectroscopy (DLTS) [4.7-4.16]. Also, the interaction of hydrogen with gold in silicon has been investigated [4.17-4.23]. Using samples exposed to plasma between 150 and 350 °C, Pearton and Tavendale reported a substantial loss of the Au activity. No such effect was found, however, for samples annealed in hydrogen gas.

Using the DLTS technique and a simple way of introducing hydrogen by wet chemical etching, Sveinbjörnsson et al. observed four deep levels, named G1–G4, in n- and p-type silicon. It was suggested that the G1, G2 and G4 levels are related to the same Au–H defect consisting of a single-gold–single-hydrogen pair. The G3 level was assigned to a Au–H$_2$ complex. Unfortunately, DLTS does not provide direct information about the microscopic structure or chemical composition of the defects. Magnetic resonance, capable of providing detailed insight into the atomic and electronic structure of centers, has so far only been reported for the orthorhombic Pt–H$_2$ center and for the trigonal complex [Pt–H$_2$]$_3$ (spectrum Si-NL53) [4.24, 4.25].

In the present study an effort has been made to elucidate the atomic and electronic structure of defects related to gold and gold–hydrogen complexes using electron paramagnetic resonance (EPR). We report on three EPR centers, which will be labeled Si-NL62, Si-NL63 and Si-NL64, and which, on the basis of the analysis of experimental observations, will be assigned to a single gold center, a gold–hydrogen complex, and a complex of Au–H$_2$, respectively.
4.2 Experiment

The material used in this experiment is silicon, either p-type float-zoned boron-doped with the room-temperature resistivity of 75–125 Ωcm or n-type Czochralski-grown phosphorus-doped single crystal with the resistivity in the range 0.75–1.25 Ωcm at room temperature. The crystals were oriented and cut into rectangular bars with the typical dimensions of 1.5x1.5x15 mm3, with the longest side parallel to a [011] crystallographic direction.

Gold and hydrogen were separately diffused into the samples in the following procedure. First, gold was introduced by thermal diffusion at a temperature between 1200 and 1300 °C for two hours (set 1) or 12 hours (set 2) from a thin layer covering one side of the sample and for 48 hours (set 3) or 72 hours (set 4) from a thicker layer on all surfaces of the sample in an argon gas atmosphere. Diffusion was terminated by a fast quench into water at room temperature. After the gold diffusion step, the gold-covered surface regions were mechanically removed and the samples were further cleaned by etching in a CP6 (HNO$_3$: HF : CH$_3$COOH = 2 : 1 : 1) solution. Subsequently the samples were measured by EPR spectroscopy. For the diffusion of hydrogen, samples were again put into a quartz ampoule filled with argon gas and a few milligrams of pure or heavy water, and then heated to 1300 °C for about half an hour. Again, a quench in water at room temperature concludes the diffusion stage.

Magnetic resonance measurements were carried out with a superheterodyne spectrometer which is operated in the K band, i.e., with the microwave frequency near 23 GHz. Signals were observed with the spectrometer tuned to dispersion under conditions of adiabatic fast passage. The magnetic field was modulated with an amplitude of approximately 0.1 mT and a frequency near 175 Hz. The spectrometer has an option of operation under full computer control.

4.3 Magnetic resonance spectra

4.3.1 EPR spectrum Si-NL62

In n-type gold-diffused samples quite strong signals covering a wide magnetic field range were observed. A typical spectrum recorded at a temperature of 4.2 K for magnetic field $B \parallel [100]$ crystallographic direction of the sample is shown in figure 4.1. The spectrum is characterized by a prominent splitting into groups of four equal-intensity lines
due to hyperfine interaction with a nuclear spin $I = 3/2$ of a magnetic nucleus of 100% natural abundance. In addition, weaker spectral lines due to hyperfine interactions with silicon neighbor atoms are observable. For further reference this new spectrum is labeled Si-NL62. At the same time, a weaker signal of the well-known Au–Fe center is observed in the magnetic field region of 765 to 770 mT [4.26, 4.27].

![EPR spectrum of Si-NL62 center](image)

Figure 4.1. Typical EPR spectrum of the Si-NL62 center observed in n-type gold-diffused silicon for magnetic field $B \parallel [100]$, microwave frequency $\nu = 22.7856$ GHz, temperature $T = 4.2$ K. Fourfold splitting due to hyperfine interaction with one gold atom, nuclear spin $I = 3/2$, abundance 100%, is clearly observable. The EPR spectrum $A23$ of the well-known Au–Fe pair is also present, as indicated.

From the full angular dependence pattern upon rotation of magnetic field in the (0 1 1) plane, as presented in figure 4.2, the monoclinic-I symmetry for the Si-NL62 center is concluded. Due to a misorientation of about 5 degrees all twelve orientations of the defect are distinguishable. The angular dependence of the four main lines of the spectrum is well described with electron spin $S = 1/2$ and a nuclear spin $I = 3/2$ by the Hamiltonian
\[H = \mu_B \mathbf{B} \cdot \mathbf{g} \cdot \mathbf{S} - g_n \mu_n \mathbf{B} \cdot \mathbf{I} + \mathbf{S} \cdot \mathbf{A} \cdot \mathbf{I} + \mathbf{I} \cdot \mathbf{Q} \cdot \mathbf{I}, \]

(4.1)

in which \(\mathbf{A} \) and \(\mathbf{Q} \) represent hyperfine and quadrupole interaction tensors, respectively, related to the \(^{197}\text{Au}\) isotope.

Figure 4.2. Monoclinic-I angular dependence pattern of the Si-NL62 spectrum for rotation of the magnetic field in the \((01\bar{1})\) plane from [100] to [011]. Experimental data recorded at temperature \(T = 4.2 \) K for microwave frequency \(\nu = 22.8155 \) GHz are presented by symbols \(\times \). Solid lines are from the computer fit using the spin Hamiltonian of equation (4.1), with a sample misorientation of about \(5^\circ \). Labeling of the defect orientations following the convention as outlined in Ref. [4.53] is indicated.

Previously, gold-related spectra have been analyzed assuming a large quadrupole effect [4.28-4.30]. A large quadrupole effect will cause an appreciable mixing of nuclear states, as a results of which different transitions become dominant in the electron spin resonance. Also for the Si-NL62 spectrum the quadrupole term has a strong effect on the spectrum as manifested by spectra recorded in the three principal directions of the \(g \) tensor. Spectra
recorded for the magnetic field parallel to the principal g-tensor directions, as shown in figure 4.3, reveal the quadrupole effect by the non-equidistance of the spectral components. By an analytical analysis of the eigenvalue problem of equation (4.1) in the regime of strong quadrupole effect compared to hyperfine effect, the separations \(\Delta B \) of the inner and of the outer pairs of lines in the spectra are obtained as

\[
|A_1|1 \pm 2/(1 + [(Q_2/Q_3) - 1]^2/3[(Q_2/Q_3) + 1]^2)^{1/2}],
\]

and cyclic expressions in the principal values \(g_i, A_i, \) and \(Q_i \) of the \(g, A \) and \(Q \) tensors, \(i = 1, 2, \) and \(3. \)

![Figure 4.3. EPR spectra of center Si-NL62 recorded with magnetic field \(\mathbf{B} \) parallel to the principal directions of the \(g \) tensor, (a) on orientations bc and cb for \(\mathbf{B} \parallel [011], \) (b) on orientation ad with \(\mathbf{B} \) 15° away from [011], (c) on orientation da with \(\mathbf{B} \) 15° away from [100].](image)

In the derivation, the principal axes of \(g, A \) and \(Q \) tensors were assumed to coincide. The positive sign refers to the outer doublet, the minus sign to the inner doublet. The result shows that ratios of quadrupole parameters are directly derived from the ratio of inner to outer pair splitting. An absolute value of quadrupole parameters cannot be obtained from the experimental data, only a lower limit of the \(Q \) parameter can be established. Once the \(Q \) parameters are fixed, the hyperfine constants are calculated from the absolute values of the splittings using equation (4.2). For spectrum Si-NL62 the analysis is illustrated in figure 4.4. Following equation (4.2) the splitting of the inner pair is plotted with the positions of
the lines of the outer pair normalized to unity. From the experimental field splittings the ratios of quadrupole parameters are obtained as \(Q_2/Q_3 = -1.23 \), \(Q_4/Q_1 = +4.85 \), and \(Q_1/Q_2 = -0.20 \). These ratios are taken as input data for the numerical computer diagonalisation of equation (4.1) with the calculation of resonance fields. Spin-Hamiltonian parameters calculated from fitting the resonance fields are given in table 4.1. Principal values of the \(Q \) tensor are determined as \(Q_1 = q_1 \), \(Q_2 = -5.2q_1 \) and \(Q_3 = +4.2q_1 \), with \(q_1 > 15 \text{ MHz} \), as given in table 4.1. The average least-squares error of 10 \(\mu \text{T} \) is much smaller than the experimental uncertainty. There exists a remarkable similarity between the parameters of the Si-NL62 center and the only other monoclinic gold-related center, the \(C_{\text{th}} \) center of Höhne [4.29].

One can notice a clear correspondence between the principal values of the \(g \), A and \(Q \) tensors, even if differences are several tenths of times outside experimental error and principal directions are interchanged.

![Figure 4.4](image)

Figure 4.4. Separation of the inner pair of resonance transitions as a fraction of outer pair line distance, as a function of the ratio of quadrupole tensor principal values \(Q_1, Q_2 \) and \(Q_3 \), calculated from equation (4.2) in text. Magnetic field is parallel to a principal axis of the \(g \), A and \(Q \) tensors, which are assumed to coincide. Fit of data for spectrum Si-NL62 indicated.

Besides with gold, a hyperfine structure due to silicon neighbors was observed, as noticeable in figure 4.1. From the intensity of the weak lines it is concluded that two \(^{29}\text{Si}\)}
neighbor nuclei on probably equivalent sites are involved. As the resonances are close to the gold structure, the angular dependence could not well be followed. Only the value in the \(B // [100] \) direction is therefore given in table 4.1. No other hyperfine structure was revealed in the EPR spectra. A conclusion toward a single isolated gold atom is, however, unlikely, as it has been shown that the gold center has tetragonal symmetry and is unobservable in EPR due to its vanishing perpendicular \(g \) value. Since in the same sample the Au–Fe pair appeared to be present, the involvement of other transition element impurities in the Si-NL62 center has been examined. In additional experiments with the introduction of copper, silver, iron, and other 3d impurities, with or without gold codoping, the Si-NL62 spectrum was not observed.

Table 4.1. Spin-Hamiltonian parameters for the spectra Si-NL62, Si-NL63 and Si-NL64, following from analysis by equations (4.1) and (4.3). All centers are described by electron spin \(S = 1/2 \). For the monoclinic centers, the direction labeled 1 is parallel to [011], direction 3 is inclined against [100] by an angle \(\theta \) (degrees).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(g_i/A_i/Q_i)</th>
<th>(g_j/A_j/Q_j)</th>
<th>(g_k/A_k/Q_k)</th>
<th>(\theta)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrum Si-NL62 – Symmetry monoclinic-I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g)</td>
<td>1.8424</td>
<td>2.2435</td>
<td>1.7165</td>
<td>15</td>
<td>MHz</td>
</tr>
<tr>
<td>(A^{Au}_1)</td>
<td>(-) 31.4</td>
<td>(+) 57.5</td>
<td>(-) 65.7</td>
<td>15</td>
<td>MHz</td>
</tr>
<tr>
<td>(Q^{Au}_1)</td>
<td>+ q</td>
<td>-5.2q</td>
<td>+ 4.2q</td>
<td>15</td>
<td>MHz</td>
</tr>
<tr>
<td>(A^{Si}_{[100]})</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Spectrum Si-NL63 – Symmetry monoclinic-I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g)</td>
<td>1.9138</td>
<td>2.2942</td>
<td>2.0387</td>
<td>21</td>
<td>MHz</td>
</tr>
<tr>
<td>(</td>
<td>A^{Au}</td>
<td>)</td>
<td>34.5</td>
<td>46.8</td>
<td>42.2</td>
</tr>
<tr>
<td>Spectrum Si-NL64 – Symmetry triclinic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g)</td>
<td>(g_{xx} = 2.1282)</td>
<td>(g_{yy} = 2.0690)</td>
<td>(g_{zz} = 2.0039)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g_{xy} = -0.0732)</td>
<td>(g_{yz} = 0.0394)</td>
<td>(g_{xz} = 0.0361)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(</td>
<td>A^{Au}</td>
<td>)</td>
<td>(A_{xx} = 13.8)</td>
<td>(A_{yy} = 23.5)</td>
<td>(A_{zz} = 18.1)</td>
</tr>
<tr>
<td>(A_{xy} = 8.72)</td>
<td>(A_{yz} = -6.36)</td>
<td>(A_{xz} = 1.06)</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A^{H})</td>
<td>(A_{xx} = 8.68)</td>
<td>(A_{yy} = 11.39)</td>
<td>(A_{zz} = 8.54)</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>(A_{xy} = 1.73)</td>
<td>(A_{yz} = -0.24)</td>
<td>(A_{xz} = 0.14)</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In the starting n-type material the phosphorus EPR spectrum is strongly present, but no trace of it is left after the diffusion with gold. This hints at an electron capture of the Si-NL62 center, becoming paramagnetic in a possibly negative charge state. Consistent with this observation, the gold diffusion in the boron-doped p-type floating-zone silicon did neither give the Si-NL62 spectrum, nor other gold-related signals. However, right after the hydrogen-doping treatment, the Si-NL62 spectrum, and the Au–Fe spectrum as well, are observed in all samples. A role of hydrogen in the formation of the centers is thus indicated. As the monoclinic symmetry of the Si-NL62 center indicates a complex core, a direct involvement of hydrogen as a constituent of the center is suggested. As this possibility is not supported by observed hydrogen hyperfine structure, the thermal stability of the assumed gold–hydrogen complex has been studied by isochronal anneal. Samples were enclosed in ampoules with argon gas at 200 mbar and annealed at temperatures in the range 100 to 650 °C, with temperature increments of 20 °C, for durations from 1 to 2 hours. The Au–Fe pair is lost by dissociation after 520 °C/1 hour annealing. The Si-NL62 center is observable under normal measurement conditions till 580 °C. At this temperature the EPR spectrum of phosphorus becomes weakly detectable and the Si-NL62 spectrum requires visible-light illumination. After annealing at 600 °C the P spectrum has recovered to its original doping concentration, but Si-NL62 remains visible under illumination. After 650 °C annealing for two hours the Si-NL62 signal has disappeared without creating any new center. The Si-NL62 center has a remarkable thermal stability, in contrast to established hydrogen-complex centers [4.31].

While the Si-NL62 spectrum is observed in all gold-diffused samples, its strength varies within the different sets of samples. Samples from the sets 1 and 2 gave rather weak signals compared to those observed in the samples from sets 3 and 4. The difference in the concentration of the Si-NL62 center is correlated to the creation ability of the new centers Si-NL63 and Si-NL64, to be described in following paragraphs.

4.3.2 EPR spectrum Si-NL63

The same samples in which the Si-NL62 center is present were subjected to a further heat treatment in which hydrogen is uniformly introduced throughout the sample volume by diffusion, as described. Following this processing step, a new EPR spectrum, labeled Si-NL63, is observed. Figure 4.5 shows the spectrum, simultaneously present with the spectrum Si-NL62 in a similar concentration and the much stronger Au–Fe pair.
Figure 4.5. EPR spectra observed after gold doping and hydrogenation for a wide range of magnetic field, with direction of B about 1° away from the [011] crystallographic direction. Microwave frequency $\nu = 23.0217$ GHz, temperature $T = 4.2$ K. The observed spectra Si-NL62, Si-NL63 and Si-A23 of Au–Fe are indicated by bold, solid and dashed arrows, respectively.

Also spectrum Si-NL63 has the monoclinic-I symmetry, as indicated by the angular rotation shown in figure 4.6. Principal g values following from the pattern are given in table 4.1. Spectrum Si-NL63 is exceptional by its complex hyperfine structure. Spectral lines with a typical width of 0.7 mT are about four times broader than line widths of the Si-NL62 center. Characteristic hyperfine structures are observed in the principal directions of the center. For $B \parallel <011>$, i.e., for the resonance in the g_1 direction, seven equidistant components with the typical intensity ratio $1:2:3:4:3:2:1$, as shown in figure 4.7, are observed. Such a structure, composed of a total of 16 transitions, cannot be explained with a single $I = 3/2$ nucleus of gold. On the other hand, the structure is easily explained as the superposition of spectra of two equivalent $I = 3/2$ nuclei, i.e., gold, and is usually taken as its unambiguous fingerprint. In principal direction labeled 2, the spectrum, as shown in figure 4.8, collapses into four lines with equal distance and intensity. While this would be
typical for a one-gold center, the structure is hard to explain by two such atoms on symmetry-related positions. Assuming, as usually correct for gold centers, a large quadrupole effect, there is an abundance of normally forbidden transitions which become allowed and which actually can dominate the spectrum, but their number is likely to be large and odd, contrasting to the observed four.

![Figure 4.6. Monoclinic-I angular dependence pattern of the Si-NL63 spectrum for rotation of the magnetic field in the (011) plane from [100] to [011]. Experimental data recorded at temperature $T = 4.2$ K for microwave frequency $\nu = 23.0217$ GHz are presented by symbols ×. Solid lines are from the computer fit using the spin Hamiltonian of equation (4.1) with $Q = 0$. Labeling of the defect orientations is indicated.](image)

In a similar case, in the analysis presented for the two-gold center LAu2 [4.30] no four-line spectra occur. In an alternative model, offering more matching parameters, a center with one gold atom plus an additional impurity also with a nuclear spin $I = 3/2$ can be considered. Suitable candidates for this additional impurity are a second inequivalent gold atom, and 63Cu, 65Cu, or 11B atoms. Although for general directions of magnetic field a more complex hyperfine structure is observed, in no case of defect orientation and
direction of magnetic field a line structure is met which can be decomposed as a superposition of two hyperfine quartet structures with a different splitting. In view of all observations, our preference is still for a model incorporating two gold atoms on symmetry-related sites. We have not succeeded in finding a unique and convincing match to these data rigorously based on a spin Hamiltonian. In that respect the hyperfine parameters given in table 4.1 and the fitting curves in figure 4.6 should be considered as indicative.

![Diagram](image)

Figure 4.7. EPR spectrum Si-NL63 recorded in the principal direction $\mathbf{B} // [011]$ on defect orientations $(bc + cb)$. The typical line structure with seven equidistant lines with the intensity ratio $1:2:3:4:3:2:1$ is observed.

To further examine the relation to gold, the formation of the spectrum Si-NL63 was quantitatively monitored in the samples from sets 1 to 4. In samples with a low concentration of gold, those from sets 1 and 2, after hydrogenation only the Si-NL62 spectrum is detected, no Si-NL63, nor other centers. Spectrum Si-NL63, and another spectrum Si-NL64, to be described in section 4.3.3, are generated only in the gold-rich
samples of sets 3 and 4. This evidence relating the formation of the Si-NL63 center to the presence of gold in higher concentrations supports the pair model.

Figure 4.8. EPR spectrum Si-NL63 recorded with magnetic field B along the principal direction 15° away from [011] in the (0 $\bar{1}$ 1) plane on defect orientation ad. The typical line structure of four lines at equal distance and intensity ratio as 4 : 4 : 4 : 4 is observed.

Following from its formation conditions, the presence of hydrogen in the Si-NL63 structure is expected. Hyperfine interaction with hydrogen often has a strength of 10 MHz, corresponding to splittings in the EPR of 0.3 mT. Structure of such a magnitude is abundantly observable and determines the line shapes of Si-NL63 resonances as shown in the figures 4.7 and 4.8. The hydrogen origin is confirmed by replacing hydrogen with deuterium, diffused under the same conditions of time and temperature. A slow scan with optimized resolution, as presented in figure 4.9, shows the different deuterium-related structure. As the resonance lines are broad, the angular dependence could not be followed and interaction tensors not quantitatively be determined. Neither could the number of hydrogen atoms be unambiguously established. However, in view of the rich structure, their number should be from two to four.
Figure 4.9. EPR spectra of the Si-NL63 center showing the effect of deuterium substitution on defect orientations ad and (bd + cd). Magnetic field is in the (011) plane at an angle of 20° away from [011].

4.3.3 EPR spectrum Si-NL64

Under visible-light illumination, in the hydrogenated gold-diffused samples, another previously not reported spectrum appeared to be present. The spectrum, labeled Si-NL64, arises from a low-symmetry center with a corresponding large number of fine-structure lines reflecting the orientational degeneracy. As the center is observed in the simultaneous presence of the Si-NL62, Si-NL63 and Au–Fe centers, the complete recorded spectrum is rather full of resonances over a field range less than 100 mT. To demonstrate this complexity, a spectrum over the full range is presented in figure 4.10 for the magnetic field in a more general direction, i.e., in the (011) plane at about 10° away from the [011] direction. As a result the angular dependence of the Si-NL64 spectrum is difficult to follow. In the experiment, fortunately, the Si-NL64 spectrum could be enhanced. First, the three centers Si-NL62, Si-NL63 and Si-NL64 are observed under different conditions of field passage and can be optimized individually. Secondly, the intensity of the Si-NL64 spectrum increases in a sensitive way with the level of illumination. Since at the same time
the Si-NL62 intensity decreased significantly, the Si-NL64 could be made the dominant spectrum. Thirdly, by a heat treatment of the sample at 150 °C the Si-NL64 spectrum became observable without illumination.

![EPR spectrum](image)

Figure 4.10. Typical EPR spectrum of the Si-NL64 center as indicated by arrows, with the spectra Si-NL62, Si-NL63, and Au–Fe also present. Observation of the spectrum is made under visible-light illumination, with magnetic field about 10° away from the [011] crystallographic direction, with microwave frequency $\nu = 23.0217$ GHz, at temperature $T = 4.2$ K.

An angular dependence pattern of the Si-NL64 center produced under optimized conditions is shown in figure 4.11 and has the unique features of the triclinic symmetry. Due to overlap of the Si-NL64 resonances with the Au–Fe spectrum, the experimental data points in the magnetic field range 775 to 780 mT are omitted. The experimental data show a good coincidence with the simulated angular dependence using a spin Hamiltonian of equation (4.3) with parameters tabulated in table 4.1. Spectrum Si-NL64 has a clear and informative hyperfine structure. Each fine-structure transition shows as a main feature a fourfold splitting which can be ascribed to the hyperfine interaction with a gold atom. In addition, a threefold splitting of each gold component reveals further hyperfine interaction with two nuclei $I = 1/2$, identified as hydrogen atoms. Altogether, the hyperfine structure is
a twelve-line group with relative intensities of \((1:2:1):(1:2:1):(1:2:1):(1:2:1)\). Those splittings are all just resolved in EPR as illustrated in figure 4.12 on an expanded field scale. Of course, in the triclinic symmetry of the center, no symmetry-equivalent positions are available for two hydrogen atoms. However, in view of the quite constant hydrogen hyperfine interactions found in a number of independent cases, the assumed equal interaction for two sites does not present a problem in the practical sense.

![Figure 4.11. Triclinic angular dependence pattern of the Si-NL64 spectrum for rotation of the magnetic field in the (0\(\bar{1}1\)) plane from [100] to [011]. Experimental data recorded at temperature \(T = 4.2\) K for microwave frequency \(v = 23.0217\) GHz are presented by symbols \(\times\). Solid lines represent simulation of the spectrum using the spin Hamiltonian of equation (4.3) with \(Q = 0\) and parameters of table 4.1.](image)

Confirmation of the hydrogen identification has been obtained by deuterium substitution. With a nuclear spin \(I = 1\), the number of hyperfine states will be larger than for the proton. As the deuteron also experiences quadrupole interactions, many more transitions will be possible. As a result, the nuclear structure in the spectrum no longer is resolvable. The clear isotope effect provides direct evidence for hydrogen incorporation in the Si-NL64 center.
Quantitative analysis has been performed with the Hamiltonian

\[H = \mu_0 \mathbf{B} \cdot \mathbf{g} \cdot \mathbf{S} + \mathbf{S} \cdot \mathbf{A}^{\text{Au}, \mathbf{I}^{\text{Au}}} + \sum_{i=1,2} \mathbf{S} \cdot \mathbf{A}^{\mathbf{H}, \mathbf{I}^{\mathbf{H}}}, \]

(4.3)

taking into account hyperfine interaction with one gold and two hydrogen atoms. No quadrupole energy was invoked. Parameters determined by fitting are given in table 4.1.

Figure 4.12. Part of the EPR spectrum of the Si-NL64 center with clear presence of the hyperfine interaction with one gold and two quasi-equivalent hydrogen atoms, resulting in the structure \((1 : 2 : 1) : (1 : 2 : 1) : (1 : 2 : 1) : (1 : 2 : 1)\) of spectral lines. The spectrum is recorded at temperature \(T = 4.2\) K, with microwave frequency \(v = 23.0217\) GHz, and with magnetic field \(\mathbf{B}\) in the \((0\overline{1}1)\) plane at an angle about \(10^\circ\) away from [011].

4.4 Discussion

4.4.1 Center Si-NL62

In all models of gold and gold-related centers in silicon, the gold impurity is concluded to be on a substitutional site, forming the core atom in a silicon vacancy. In the bonding between gold and surrounding silicon atoms issues of interest are the symmetry of the
resulting defect structure and the distribution of electrons over the defect site. From theoretical calculations by Lowther and Fazzio et al., the isolated substitutional gold atom in silicon tends to bond with two silicon atoms, with the bonds on the other two atoms of the vacancy site reconstructed [4.1-4.3]. The model results in an amphoteric two-level system with three charge states of the gold atom possible [4.5-4.6, 4.3]. With a Fermi level above the donor state at $E_d + 0.35$ eV and below the acceptor state at $E_a - 0.54$ eV, the neutral defect is paramagnetic and an obvious candidate for observation by EPR.

Experimentally, an unambiguous interpretation for the atomic configuration and electronic structure of neutral substitutional gold in silicon has been presented. From Zeeman studies of the donor and acceptor excitation spectra at 793 and 611 meV, Watkins et al. have concluded that the neutral isolated gold center is paramagnetic, is described by electron spin $S = 1/2$, an axial g tensor with $g_{[110]} = 2.8$ and $g_{[100]} = 0$ corresponding to a static tetragonal distortion [4.32]. The fact that $g_{\perp} = 0$ prevents the EPR detection of Au°.

For a theoretical interpretation the vacancy model, following Watkins' early proposal [4.33], was developed into a quantitative model [4.34, 4.35], and provides the most powerful tool for analysis of data. For the present application to the Si-NL62 center reference is made to these papers for the definition of quantities and the meaning of symbols. The electron state is described as a linear combination of t_2 gap states of the vacancy and d states of the gold atom. Normalized wave function coefficients are given as u, v, and w, with $u^2 + v^2 + w^2 = 1$. The relative localization on the gold atom is N^2. Deviation of the g value from its free-electron value $g_e = 2.0023$ will be due to admixture of orbital angular momentum which is attributed to the heavy gold atom only. Taking into account the opposite sign of matrix elements in the effective spin for the triplet, the orbital g factor is $g_L = -N^2$. Solving for the eigenvalues of the Zeeman Hamiltonian, the g tensor has the following principal values:

\[g_{xx} = g_e(2uv - w^2) - 2\sqrt{2}g_L w(u - v) , \]
\[g_{yy} = g_e(2uv + w^2) + 2\sqrt{2}g_L w(u + v) , \]
and

\[g_{zz} = g_e(1 - 2w^2) - 2g_L(u^2 - v^2) . \]
With the experimental data for the g tensor \(g_{xx} = 1.8424, g_{yy} = 1.7165 \) and \(g_{zz} = 2.2435 \), the valid exact solution of equations (4.4) to (4.6) will give \(u = 0.83, v = 0.55, w = 0.09 \) and \(g_L = -0.37 \). The small value of \(w \) reflects the small admixture to the wave function of the higher-lying orbital singlet \(|\zeta\rangle \) formed after Jahn-Teller distortion which lifts the degeneracy of the triplet level in the original tetrahedral symmetry. However, the small non-zero value of \(w \) with the result that \(g_{xx} \neq g_{yy} \) and non-axial structure of the center and its g tensor, allows centers with a near-axial symmetry, such as the present Si-NL62, to be treated. The result \(N^2 = -g_L = +0.37 \) shows a remarkable similarity to the electron localization of the single gold atom, for which, following the simplified treatment of Ref. [4.34], the localization is found to be \(N^2 = (g_{v} - 2)/(4 - g_{\perp}^2)^{1/2} = 0.40 \). This result implies considerable support for a comparable electronic structure of the two centers.

With the wave function characterized, the hyperfine interactions may as well be considered. The lengthy expressions for the tensor components as given in Ref. [4.34] will not be reproduced here. On substituting the values calculated for \(u, v \) and \(w \), and putting \(g_L = -N^2 \), one obtains \(A_{xx} = +0.91A_c + 16.27N^2, A_{yy} = +0.92A_c - 98.20N^2 \) and \(A_{zz} = +0.98A_c + 150.59N^2 \). To obtain the result, the factor \(P = 2(\mu_B/4\pi)\mu_B g_{\perp}M^<r^3>_5d/h \) for orbital magnetism on the gold atom has been taken as \(P = 132 \) MHz [4.36]. Parameter \(A_c \) accounts for the, nearly isotropic, core polarization. On comparing with the measured data, one must realize that in the experiments signs of hyperfine constants are not determined. With the help of the above theoretical result, one can conclude that \(A_{zz} \) will be the largest value, and \(A_{yy} \) the smallest. Taking account of this indication, the experimental values are taken as \(A_{xx} = -31.4 \) MHz, \(A_{yy} = -65.7 \) MHz and \(A_{zz} = +57.5 \) MHz. A best match with the data from experiment is then obtained for \(A_c = -25.34 \) MHz and \(N^2 = +0.48 \). For these values of \(A_c \) and \(N^2 \) the calculated hyperfine constants become \(A_{xx} = -15.2 \) MHz, \(A_{yy} = -70.2 \) MHz and \(A_{zz} = +46.8 \) MHz. Given the approximations in the theoretical treatment, and also the fact that \(u, v \) and \(w \) parameters as obtained from g-tensor analysis were used without any further optimization, the result should be considered as quite satisfactory. Parameter \(A_c \) has an expected negative value with a comparable magnitude to core polarizations calculated for the Au–Li and Au–Li3 centers [4.37, 4.38]. Decomposing the hyperfine tensor into its isotropic part \(a \) and anisotropic part \(b \) in an axial approximation, one obtains \(a = (1/3)(A_{xx} + A_{yy} + A_{zz}) = -13.2 \) MHz and \(b = (1/6)(2A_{zz} - A_{xx} - A_{yy}) = +35.4 \) MHz. Relating the anisotropic part to the gold 5d orbitals in the common LCAO analysis, an occupation \(r^2/\beta^2 = 0.94 \) is calculated. This could easily lead to a conclusion of almost a full hole in the d
shell of gold, in a strong contradiction to the basic idea behind the vacancy model. The discrepancy with the earlier result for N^2 can, however, be traced to be due to neglect of orbital interaction in the LCAO treatment, which can lead to substantial errors, as, e.g., demonstrated in the calculations for the Au-Li and Au-Li$_3$ centers [4.37, 4.38]. Analyzing the A tensor in its full anisotropic form, after subtraction of the isotropic matrix $a.I$, the anisotropic traceless tensor B has components $b_{xx} = -18.2$ MHz, $b_{yy} = -52.5$ MHz and $b_{zz} = +70.7$ MHz. One notices that $b_{yy}/b_{xx} = +2.9$ and $b_{zz}/b_{xx} = -3.9$, showing a good correspondence to the ratio's as derived for the quadrupole tensor $q_{yy}/q_{xx} = +4.2$ and $q_{zz}/q_{xx} = -5.2$. Both hyperfine and quadrupole parameters are related to the occupancy of the gold 5d orbitals. Components are given, respectively, by

\[
b = \eta^2 \beta^2 (2/7)(\mu \sqrt{4\pi})g_{\text{Au}}\mu_N <r^{-3}>_{5d}, \tag{4.7}
\]

\[
q = \eta^2 \beta^2 (2/7)(1/4\pi\epsilon_0)[e^2Q/2I(2I-1)] <r^{-3}>_{5d}, \tag{4.8}
\]

and are, therefore, related by

\[
qu/b = e^2Q/2I(2I-1)\epsilon_0\mu_0\mu_N g_{\text{Au}}. \tag{4.9}
\]

Substituting the physical parameters for the 197Au isotope, $I = 3/2$, $g_n = 0.09717$ and $Q = 0.59 \times 10^{-28}$ m2, the ratio q/b is calculated as 2.51. The result supports the earlier assumption of large quadrupole effects on the spectrum, which is an established specific feature for gold following from its unusually small g_n factor and large quadrupole moment Q. With $q/b = 2.51$ the quadrupole component for the Si-NL62 center is estimated at $q = (1/6)(2q_{zz} - q_{xx} - q_{yy}) = 90$ MHz. One electron is therefore held responsible for both the unpaired spin density and the charge unbalance in the center. It is also concluded that all three tensors, g, A, and Q, have a near-axial symmetry along a common axis.

Besides with gold, the ligand hyperfine interaction with 29Si was also observed in the experiment and associated with two neighbor atoms. In the vacancy model the electron distribution over the neighbor pairs, labeled (a,d) and (b,c), is given by $p_{ad} = (1/2)(u + v)^2$ and $p_{bc} = (1/2)(u - v)^2$. With the numerical values for u and v substituted, these occupation ratio's become $p_{ad} = 0.96$ and $p_{bc} = 0.04$. The orbital on the a and d atoms strongly predominates over the orbital between the b and c atoms, consistent with the experimental
observation of hyperfine interaction with only two of four silicon neighbors. In experiment the isotropic part of the ^{29}Si hyperfine interaction is determined as 110 MHz, corresponding to an s-type density $\alpha^2\eta^2 = 2.2\%$. When accepting a real orbital of hybridized sp3 type the neighbor bonds a and d could each account for as much as 8.8% of an electron. With the estimated $N^2 \approx 40\%$ for the localization on gold the description of a molecular orbital constructed from gold states and four vacancy neighbors does not fully cover the whole region of electron distribution.

Following from the discussion, the Si-NL62 center is concluded to be a one-gold center. Whereas it shows distortions leading to the observed low monoclinic symmetry, there are no other indications of strong perturbations of its electronic structure. Formation of a gold-impurity complex is not manifest in corresponding hyperfine interaction with such an additional impurity. The accommodation of the gold atom in a larger intrinsic defect is still an open option. The divacancy with monoclinic symmetry in both positive and negative charge states is a suitable candidate. All the same discussion as for the spin-Hamiltonian parameters of spectrum Si-NL62 applies to the C_{th} spectrum as well, with the conclusion that the two associated centers must be very similar, if not identical [4.29]. The orthorhombic center Si-NL50, also a one-gold center without any observed other component, cannot be analyzed within the vacancy model [4.39].

4.4.2 Center Si-NL63

As described in the experimental section 4.3.2, the Si-NL63 center is only formed after hydrogenation/deuteration of the samples from sets 3 and 4 with high gold concentration and strong presence of the Si-NL62 center. The participation of one gold atom is suggested by the hyperfine structure $4:4:4:4$ as observed for defect orientations ad and da, illustrated by figure 4.8. In spite of this evidence, the conclusion towards one gold atom is not adopted. In other directions, see, e.g., figure 4.7, a line structure $1:2:3:4:3:2:1$ is observed. Although these 16 transitions could be understood as the observation of all transitions between the four upper $|m_s = +1/2,m_l> \text{ levels}$ and the four lower $|m_s = -1/2,m_l> \text{ levels}$, this would require equal probability of four allowed and twelve forbidden transitions. Also, the equal distance between resonance lines would be difficult to reconcile. For large quadrupole effect, the four levels for each m_s separate into two doublets, at about the energy $+3Q_{\text{eff}}$ for the states $m_l = \pm 3/2$ and around energy $-3Q_{\text{eff}}$ for the states $m_l = \pm 1/2$. This leads to a spectrum with an intensity structure $4:8:4$ at energies
CHAPTER 4

+ 6\(Q_{\text{eff}}\), 0 and −6\(Q_{\text{eff}}\) respectively. Finally, the \(g\) tensor of center Si-NL63 does not lend itself to analysis within the vacancy model. The conclusion toward two gold atoms in the center is therefore strongly raised for the discussion. As the given spectra are characterized by equidistant lines, the gold atoms are most likely on symmetry-equivalent lattice sites.

Homo-nuclear impurity pairs are by no means exceptional complexes in silicon. Such defect structures have been identified for the transition elements iron [4.40, 4.41], copper [4.42], silver [4.43, 4.44], platinum [4.45-4.47] and also for gold. A gold–gold pair of orthorhombic-I symmetry, the Si-LAu2 center, has been observed in electron paramagnetic resonance [4.30]. The appearance of a 1 : 2 : 1 structure of spectral lines was explained as being the result of two equivalent Au atoms lying in one of the mirrorplanes, on sites symmetrically placed above and below the other mirror plane. The spectrum was also observed in the present experiments under illumination by visible light. Although being formed under similar conditions of gold diffusion and hydrogenation, center Si-LAu2 is distinct from the Si-NL62 spectrum, having different symmetry and \(g\) tensor.

In optical spectroscopy a different gold pair of trigonal symmetry was identified [4.48]. On the basis of detailed studies the equivalence of the two gold atoms was established. As a model, a pair of gold atoms inside a divacancy was proposed. This defect might well be the core of the Si-NL63 center. Experiment shows that formation of the Si-NL63 center follows the formation of the Si-NL62 center, and the presence of Si-NL62 might be a strict requirement.

In the previous section, for Si-NL62 a half-filled divacancy was presented as a suitable defect model. From this structure the trigonal optical center can be formed by the subsequent capture of another gold atom taking the position of the neighboring vacant site. With the accommodation of two gold atoms, each with the 5d\(^{10}\)6s configuration, the analogue of the VV\(^2\)− defect is created, which by itself is not a paramagnetic center. Adding two hydrogen atoms in symmetry-equivalent positions will create a monoclinic-I point-group \(m\) (C\(_{2h}\)) center, which upon ionization becomes paramagnetic. Alternatively, adding three hydrogen atoms, in one (110) plane, will still create a monoclinic defect with a point-group symmetry \(m\) (C\(_v\)) but with the gold atoms no longer on strictly equivalent positions. The center is paramagnetic when neutral. The first of these options for Si-NL63 models is illustrated in figure 4.13(b).
4.4.3 Center Si-NL64

For the center Si-NL64, a most attractive feature is the well-resolved hyperfine structure in its EPR spectrum. For all defect orientations and several directions of magnetic field four equally spaced identical groups of lines are observed, each consisting of three equally spaced lines with an intensity ratio $1:2:1$. For an illustration, see figure 4.12. In view of the present sample preparation conditions, such a structure forms almost compelling evidence for a center consisting of one gold atom ($I = 3/2, 100\%$), responsible for the fourfold splitting, and two hydrogen atoms ($I = 1/2, 100\%$) with an equal hyperfine interaction. For spectrum Si-NL64, in contrast to spectrum Si-NL62, the splitting of resonances by the nuclear interactions always shows a pattern with equal distances between lines. Even though quadrupole effects are almost inevitably present and large, there is no manifestation of them in the recorded spectra. For this reason angular dependencies are analyzed, using equation (4.3), without a quadrupole interaction energy. As the neutral gold is iso-electronic to negative platinum, a neutral center Au–H$_2$ could be an atomic and electronic analogue of the well-established negative Pt–H$_2$ center [4.24, 4.25, 4.49]. Recently, a similar situation was met in the study of lithium complexing with gold and platinum, leading to defects with a comparable trigonal or orthorhombic structure [4.37]. Hyperfine interaction with the transition metals arises mainly from orbital and dipole-dipole interaction, which both are proportional to the nuclear g factor. As evidenced by the data in table 4.2, the hyperfine interactions scale corresponding to g_n, which is $g_n = 0.09717$ for 197Au and $g_n = 1.2190$ for 195Pt. Applying a similar scaling to the hyperfine interactions of Pt–H$_2$, the values obtained match well with those for the Si-NL64 Au–H$_2$ center, indicating a similar electronic density. The suggestion on similar electronic structure is firmly supported by the hydrogen hyperfine interactions. For both the gold and platinum centers the isotropic part is found near 10 MHz, corresponding to a very low s-type spin density around 0.7% on the hydrogen position, probably by nearly complete filling of the 1s states by two electrons of opposite spin. Anisotropic hyperfine interaction with hydrogen is due to remote electron spin density, assumed to be mainly present on the gold/platinum site. With parameter $b = 1.3$ MHz for the Si-NL64 spectrum and using $b = (\mu_0/4\pi)\mu_g g_n \mu_h r^{-3}$, the distance $r = 0.4$ nm is calculated. With this distance the preferred position of hydrogen is on an antibonding site of a nearest silicon neighbor of the transition metal, an identical result for both the gold and platinum centers. Whereas the analysis of hyperfine interactions indicates a strong similarity of the two centers, their overall
symmetry is different, as indicated by their g tensors. It is not possible to analyze the g tensors within the vacancy model, which can be taken as an indication of strong distortion in the core of the center where a vacancy provides room to accommodate the transition metal. The Pt–H_2 center has an orthorhombic-I symmetry, in which the two hydrogen atoms are positioned on symmetry-equivalent sites on an (011) mirrorplane through the platinum atom. For the Au–H_2 center the lower triclinic symmetry suggests to use more flexibility in positions for hydrogen in modeling the center. This would be allowed as long the distance $r \approx 0.4$ nm is observed. With reference to the model of the Si-NL62 center, it might well be that the low triclinic symmetry is derived by binding two hydrogen atoms to this one-gold center with one hydrogen atom outside the monoclinic mirrorplane. An atomic model in this spirit is presented in figure 4.13(c). The center is observed in magnetic resonance in its neutral state $[Au,(H_2)_1(H_2)_2]^0$. If both hydrogen atoms form a center of one negative charge, the gold atom, having transferred two electrons to the stable hydrogen orbitals, has become double positive. With an electron configuration on the gold of 5d^9 the center is not a good candidate for a treatment in the vacancy model.

![Atomic models considered for the observed EPR spectra. (a) A single gold atom on (011) plane in monoclinic-I symmetry for center Si-NL62. (b) Two gold atoms on (011) plane with additional hydrogen atoms in monoclinic-I symmetry for center Si-NL63. (c) One gold and two hydrogen atoms in triclinic arrangement for the Si-NL64 center.](image)

Gold–hydrogen centers have also been observed in other experimental studies. Especially in DLTS and the technique of wet chemical etching to introduce hydrogen, several electronic levels due to gold–hydrogen complexes have been reported [4.22, 4.23]. The actual number of hydrogen atoms in the centers can vary from one to four. In
particular for the case of gold, three different electric levels named G1, G2, and G4, were assigned to one-gold–one-hydrogen complexes. A level G3 was assigned to a one-gold–two-hydrogen complex. By infrared absorption Evans et al. [4.50] observed vibrational modes ascribed to a neutral Au–H$_2$ center with orthorhombic symmetry, i.e., with features very similar to those observed for the Pt–H$_2$ defect. These results, though unanimously reporting the binding of hydrogen to gold, platinum, etc., to be an effective process, differ nevertheless still in the details of complexes formed and their activity. Further studies, in which theoretical work on stability, symmetry and electrical activity of centers will play an important role [4.51, 4.52], are required for future progress in this field.

Table 4.2. Comparison of the hyperfine interactions observed for Au- and Pt-related centers with a similar structure. Parameters for Au–H$_2$ are from the spectrum Si-NL64.

<table>
<thead>
<tr>
<th>Center</th>
<th>Tensor Component</th>
<th>Au</th>
<th>Pt</th>
<th>Ratio Au/Pt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au/Pt</td>
<td>g_n</td>
<td>0.09717</td>
<td>1.2190</td>
<td>0.0797</td>
</tr>
<tr>
<td>Au–Li/Pt–Li$_3$</td>
<td>$A_{[011]}$</td>
<td>8.5</td>
<td>118</td>
<td>0.072</td>
</tr>
<tr>
<td>Au–Li$_3$/Pt–Li</td>
<td>A_3^z</td>
<td>51.7</td>
<td>696</td>
<td>0.074</td>
</tr>
<tr>
<td></td>
<td>A_2^z</td>
<td>36.3</td>
<td>321</td>
<td>0.113</td>
</tr>
<tr>
<td>Au–H$_2$/Pt–H$_2$</td>
<td>A_1</td>
<td>7.0</td>
<td>175.7</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td>A_2</td>
<td>17.7</td>
<td>237.3</td>
<td>0.074</td>
</tr>
<tr>
<td></td>
<td>A_3</td>
<td>30.7</td>
<td>541.2</td>
<td>0.057</td>
</tr>
</tbody>
</table>

4.5 Conclusion

In this chapter the atomic and electronic structure of three new paramagnetic centers observed in silicon after doping with gold or gold plus hydrogen/deuterium are discussed. A center labeled Si-NL62 requires the diffusion of gold only and reveals itself in the measurements as a single substitutional gold atom, but in a monoclinic-1 environment. It can be characterized by Zeeman interaction g, gold hyperfine interaction A and quadrupole interaction Q of nearly axial symmetry with axes of the three tensors coinciding. The
center is successfully discussed within the vacancy model and then shows almost equal
electron localization \(N^2 \approx 0.40 \) in the 5d electron shell of gold as the established single
substitutional gold center. Center Si-NL63 has a more complex structure consisting of two,
probably equivalent, gold atoms decorated by two or three hydrogen atoms, with all atoms
in a monoclinic-I configuration. Hydrogen atoms occupy the common interstitial
antibonding sites to a silicon nearest neighbor. The third center, Si-NL64, has one gold and
two nearly equivalent hydrogen atoms in a triclinic arrangement. It appeared to be quite
similar to the well-studied platinum center Pt–H\(_2\) and the (dis)similarities between these
centers are discussed. In all modeling the idea of accommodating gold atoms in a silicon
divacancy has been a leading thought.

References

 (1980).
 301 (1997).
 B 55, 16176 (1997).
Gold and Gold-Hydrogen Complexes in Silicon

