Distributed Event-driven Simulation - Scheduling Strategies and Resource Management

Overeinder, B.J.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Contents

1 Introduction .. 1
 1.1 Rationale .. 1
 1.2 Modeling and Simulation 3
 1.2.1 Systems and System Environment 3
 1.2.2 Components of a System 3
 1.2.3 Model of a System 4
 1.2.4 Experimentation and Simulation 4
 1.2.5 A Closer Look at System Models 6
 1.2.6 Model Execution: Time-Driven versus Event-Driven ... 7
 1.2.7 World Views in Discrete Event Simulation 8
 1.3 Parallel Computing 9
 1.3.1 Parallel Architectures 9
 1.3.2 Resource Management: Scheduling and Load Balancing ... 11
 1.4 Problems and Challenges 13
 1.5 Outline of Thesis 14

1 Scheduling Strategies 17

2 Issues in Parallel Discrete Event Simulation 19
 2.1 Introduction 19
 2.2 Basic Concepts 21
 2.2.1 Need for Logical Processes 21
 2.2.2 The Curse of Causality 22
 2.3 Conservative Methods 24
 2.3.1 Deadlock Avoidance 25
 2.3.2 Deadlock Detection and Recovery 26
 2.3.3 Performance of Conservative Methods 27
 2.4 Optimistic Methods 28
 2.4.1 Virtual Time 29
 2.4.2 The Basic Time Warp Mechanism 30
 2.4.3 Rollback Strategies 32
 2.4.4 State Saving 34
 2.4.5 Optimism Control 37
 2.4.6 Global Virtual Time Algorithms 41
 2.5 Summary and Discussion 44
Contents

3 The APSIS Time Warp Kernel

3.1 Introduction ... 49
3.2 Parallel Discrete Event Simulation Environments 50
 3.2.1 Languages ... 51
 3.2.2 Libraries ... 53
3.3 Design of the APSIS Environment 55
 3.3.1 Requirements and Design Goals 55
 3.3.2 Overview ... 56
 3.3.3 The Application Programming Interface 57
 3.3.4 The Software Architecture 62
3.4 Extensions to the Time Warp Kernel 65
 3.4.1 Event Retraction 66
 3.4.2 Incremental State Saving 67
3.5 Implementation Aspects of the Time Warp Simulation Kernel .. 68
 3.5.1 Simulation Kernel and Data Structures 68
 3.5.2 Synchronization 70
 3.5.3 Fossil Collection and Irrevocable Events 72
 3.5.4 The Global Virtual Time Computation 73
3.6 Summary and Discussion 74

4 APSE: Average Parallelism, Profile, and Shape Evaluation

4.1 Introduction ... 77
4.2 Characterization of Parallelism in Applications 78
 4.2.1 The Average Parallelism Metric 79
 4.2.2 The Space-Time Model 80
 4.2.3 Critical Path Analysis 83
4.3 Design and Implementation of APSE 84
 4.3.1 Conceptual Tool Structure 84
 4.3.2 Overview of APSE 85
4.4 Experiments, Validation, and Assessment 91
 4.4.1 Unidirectional Ring 91
 4.4.2 Bidirectional Ring 94
4.5 Related Work ... 97
4.6 Summary and Discussion 99

5 Parallel Asynchronous Cellular Automata

5.1 Introduction ... 103
5.2 Asynchronous Cellular Automata 104
 5.2.1 Cellular Automata 104
 5.2.2 Asynchronous Cellular Automata 105
 5.2.3 The Asynchronous Cellular Automata Model 106
 5.2.4 Parallel Simulation of Cellular Automata Models 107
5.3 Ising Spin Systems .. 109
 5.3.1 The Ising Spin Model 109
 5.3.2 The Dynamics in the Ising Spin Model 111
5.4 Optimistic Simulation of Continuous-Time Ising Spin Systems .. 114
Contents

5.5 Parallel Performance and Scalability 118
5.5.1 Relative Parallel Performance and Scalability 118
5.5.2 Absolute Parallel Performance and Scalability 126
5.6 Summary and Discussion .. 130

6 Self-Organized Critical Behavior in Time Warp 133
6.1 Self-Organized Criticality ... 133
6.2 Self-Organized Criticality in Time Warp Dynamics 135
6.2.1 Slowly Driven, Interaction-Dominated Threshold Systems 135
6.2.2 Physical and Computational Critical Behavior 137
6.3 A First Indication of Self-Organized Criticality in Time Warp 138
6.4 Finite-Size Scaling Effects .. 142
6.4.1 Influence of lattice size 142
6.4.2 Varying the Number of Processors 143
6.4.3 Different Virtual Time Window Sizes 147
6.5 Summary and Discussion .. 149

II Resource Management .. 151

7 Dynamic Load Balancing of Execution Threads 153
7.1 Introduction ... 153
7.2 Background and Design Aspects 155
7.2.1 Trends in Hardware ... 156
7.2.2 Trends in Software .. 157
7.3 The Polder Metacomputer Experimental Framework 159
7.3.1 Resource Management in the Polder Metacomputer 160
7.3.2 The Curse of Dynamics 161
7.4 Dynamite: Process Migration in Message Passing Environments .. 162
7.4.1 The PVM System .. 164
7.4.2 Design Aspects of Process Migration in Dynamite 165
7.5 Implementation Aspects of the Dynamite Environment 166
7.5.1 The Scheduler .. 166
7.5.2 Consistent Checkpointing Through Critical Sections 168
7.5.3 The Migration Protocol 169
7.5.4 Packet Routing and Direct Connections 171
7.6 Performance Evaluation .. 172
7.6.1 Measuring DPVM Communication Overhead 173
7.6.2 Checkpoint and Migration Overhead 175
7.6.3 NAS Parallel Benchmarks 177
7.6.4 The GRAIL Finite-Element Model Simulation 180
7.7 Summary and Discussion .. 184

8 Summary and Conclusions ... 187

Bibliography ... 191
<table>
<thead>
<tr>
<th>Publication</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publications</td>
<td>209</td>
</tr>
<tr>
<td>Dutch Summary/Nederlandse Samenvatting</td>
<td>213</td>
</tr>
<tr>
<td>Nawoord</td>
<td>217</td>
</tr>
<tr>
<td>Index</td>
<td>219</td>
</tr>
</tbody>
</table>