Distributed Event-driven Simulation- Scheduling Strategies and Resource Management

Overeinder, B.J.

Citation for published version (APA):
Index

absolute efficiency, 126
ACA, see asynchronous cellular automata
activity, 3
activity scanning, 9
adaptive optimism control
 global state, 40
 local state, 39
aggressive cancellation, 32
anti-message, 31
APSE, 84–91, 119
APSIS, 49, 55–65, 114, 138
asynchronous cellular automata, 105, 106
 nondeterministic, 106
attribute, 3
average parallelism, 77, 79, 91, 119
Beowulf parallel computer, 156
Boltzmann distribution, 112
CA, see cellular automata
cancel queue, 66, 68
cancellation strategies, 32
 aggressive, 32
 direct, 33
 lazy, 32
 lazy re-evaluation, 33
cascaded rollbacks, 37, 130, 141
causality
 (local) constraint, 23, 61
 error, 22
cellular automata, 104
 asynchronous, 105, 106
 nondeterministic, 106
 parallel asynchronous, 108
 parallel synchronous, 107
 synchronous, 104
checkpointing, 168
cluster computing, 156
clusters of workstations, 156
computational critical behavior, 137, 150
computer experiment, 1
computer simulation, 1
conservative methods, 20, 24–28
continuous system, 3
continuous-time model, 6
copy state saving, 34, 68
correlations, 133, 137
 long-range, 137, 139, 142
COW, see clusters of workstations
critical exponent, 133
critical path, 78
 analysis, 83
 enumeration algorithm, 89
critical sections, 168
critical system, 135
critical time, 83, 88
DAS parallel computer, 92, 118, 138, 156
data dependency graph, 78
DCS, see dynamic complex systems
deadlock avoidance, 25
deadlock detection and recovery, 26
direct cancellation, 33
discrete event model, 7
discrete event simulation
 activity scanning, 9
 event scheduling, 8, 56
 parallel, 24, 28
 process interaction, 9, 56, 81
 self-initiating, 45
 world view, 8
discrete system, 3
discrete-time model, 7
DISS, 98
distributed computing, 11, 155
distributed memory, 10, 156
DPVM, see Dynamite
dynamic complex system, 103
dynamic load balancing, see load bal-
cancing
Dynamic PVM, see Dynamite
Dynamite, 162–165
entity, 3
event, 3
 endogenous, 3
 exogenous, 3
 external, 21
 internal, 21
 scheduling, 8
event granularity, 127
event message, 21
event precedence graph, 80
event queue, see input queue
event retraction, 66, 71
event-driven simulation, 8
experimental framework, 3
Fornax, 52
fossil collection, 31, 41, 72
fractal properties, 133
global virtual time, 31, 41, 61, 73
 centralized computation, 41
 distributed computation, 43
grid computing, 154
GVT, see global virtual time
High Level Architecture, 13
high performance computing, 12, 158
high throughput computing, 12, 158
HLA, see High Level Architecture
incremental state saving, 35, 67
inherent parallelism, 77, 119
input queue, 63, 68
Ising spin model, 109, 135
 continuous-time, 113, 114
 critical temperature, 113
 ferromagnetic, 110
 paramagnetic, 110
Ising spin phase transition, 137, 138
job, 11
lazy cancellation, 32
lazy re-evaluation, 33
load balancing, 12
 dynamic, 12, 162
 local-area, 166
 migration decider, 167
 optimistic simulation, 39, 190
 resource monitoring, 167
 scheduler, 166
 wide-area, 161
local virtual time, 30, 61
local-area networks, 156
logical clocks, 30
logical processes, 21
long-range correlations, 137, 139, 142
lookahead, 27
LVT, see local virtual time
massively parallel processor, 10, 156
metacomputing environment, 154
Metropolis algorithm, 112
model, 4
 continuous, 5
 deterministic, 5
 discrete, 5
 dynamic, 5
 state, 3, 21
 static, 5
 stochastic, 5
Monte Carlo method, 103, 112, 126
Monte Carlo time step, 119
MPP, see massive parallel processor
networks of workstations, 156
non-adaptive optimism control, 38
NOW, see networks of workstations
null message, 25
optimism control, 37, 62, 70, 124, 147
 adaptive global state, 40
 adaptive local state, 39
 non-adaptive, 38
optimism throttling, see optimism control, 124
optimistic methods, 20, 28-44
output queue, 63, 68
parallel discrete event simulation, 20
 conservative, 24
 optimistic, 28
parallel efficiency
 absolute, 126
 relative, 118
parallel random number generation, 115
 leap-frog, 116
 splitting, 116
parallelism profile, 79, 90
periodic checkpointing, see periodic state saving
periodic state saving, 34
PERT algorithm, 87, 88
physical critical behavior, 137, 150
physical processes, 21
Polder metacomputer, 159–162
positive message, 31
potential parallelism, 77
power-law distribution, 133
predictability, 26
priority queue, 69
process, 11
process interaction, 9
process migration, 165, 169
program activity graph, 83, 88
pseudo-random number generator, 115
PVM, 164
 daemons, 164
 tasks, 164
random number generator, 115
relative efficiency, 118
resource management, 11, 154, 160
rollback strategies, see cancellation strategies
scale-invariant properties, 133
scaling exponent, 133
scheduling, 12
 dynamic, 12, 162
 global, 12, 161
 local, 12
 optimistic simulation, 39
 static, 12, 162
self-organized criticality, 133
 finite-size scaling, 142
self-similar properties, 133
separation of time scales, 135
sequential fraction, 78, 91
shape vector, 79, 90
shared memory, 10
simulation
 continuous, 5
 discrete event, 5
 event-driven, 8
 Monte Carlo, 5
 predictability, 4
 realizability, 4
 time-driven, 7
 well defined, 4
simulation languages, 51
simulation libraries, 53
simulation model, see model
simultaneous events, 70
SOC, see self-organized criticality
space-time diagram, 81
speedup models
 absolute, 126
 memory-bounded, 67, 78
 relative, 118
state queue, 63, 68
state saving, 34
 copy, 34, 68
 hybrid, 37
 incremental, 35, 67
 periodic, 34
straggler, 30
super-critical speedup, 33, 99
system, 3
 components of a, 3
 continuous, 3
 discrete, 3
 environment, 3
 state, 3
task, 11
task precedence graph, 78
thrashing, 35, 37, 123
throttling, 35, see optimism control
Time Warp, 28, 30–31, 56, see AP-SIS
time-driven simulation, 7
timestamp, 21
validation, 2
virtual environments, 13, 187
virtual time, 29–30
virtual time window, 124, 147, see
optimism control
well-defined, 26
wide-area networks, 157
world view, 8
 activity scanning, 9
 event scheduling, 8, 56
 process interaction, 9, 56, 81