Dynamic embeddings for user profiling in Twitter

Liang, S.; Zhang, X.; Ren, Z.; Kanoulas, E.

DOI
10.1145/3219819.3220043

Publication date
2018

Document Version
Final published version

Published in
KDD '18 : proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining

License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-we-take-care)

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 426, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Dynamic Embeddings for User Profiling in Twitter

Shangsong Liang
King Abdullah University of Science and Technology, Saudi Arabia
shangsong.liang@kaust.edu.sa

Zhaochun Ren
Data Science Lab, JD.com, China
renzhaochun@jd.com

Xiangliang Zhang
King Abdullah University of Science and Technology, Saudi Arabia
xiangliang.zhang@kaust.edu.sa

Evangelos Kanoulas
University of Amsterdam, The Netherlands
e.kanoulas@uva.nl

ABSTRACT
In this paper, we study the problem of dynamic user profiling in Twitter. We address the problem by proposing a dynamic user and word embedding model (DUWE) and a streaming keyword diversification model (SKDM). DUWE dynamically tracks the semantic representations of users and words over time and models their embeddings in the same space so that their similarities can be effectively measured. We utilize Bamler and Mandt’s skip-gram Filtering algorithm [4] for our inference, which works with a convex objective function that ensures the robustness of the learnt embeddings. SKDM aims at retrieving top-K relevant and diversified keywords to profile users’ dynamic interests. Experiments on a Twitter dataset demonstrate that our proposed embedding algorithms outperform state-of-the-art non-dynamic and dynamic embedding and topic models.

CCS CONCEPTS
• Mathematics of computing → Probabilistic representations;

KEYWORDS
Word embeddings; Dynamic model; Profiling

1 INTRODUCTION
Twitter is one of the most popular microblogging platforms that allow users to describe their current status, recent activities and opinions in short pieces of texts [21]. Understanding how the interests of users evolve over time is of paramount importance to a variety of downstream applications in microblogging platforms, such as user clustering [25], and news recommendations [33]. In this paper, we study the problem of user profiling [3] based on their interests as expressed in streams of short text. The task of user profiling was first introduced by Balog et al. [3], where language modeling was used to model users and a set of relevant keywords were selected to represent a user’s profile. Similar approaches were used by Rybak et al. [36] and Fang and Godavarthy [14]. These approaches demonstrate a number of major drawbacks: (a) they treat words as atomic units leading to a vocabulary mismatch that harms performance, (b) they represent words and users in disjoint vocabulary spaces making it difficult to measure the similarity between users and words when constructing the profile, and (c) they fail to capture the dynamic nature of user profiles along time (with the exception of Fang and Godavarthy [14]).

Unlike previous work on user profiling that concentrating on words, in this paper we target at building user profiles by embedding users and words in a common semantic space. Embeddings [4, 7, 32, 34, 40] have emerged as a powerful method to encode semantic relations between words and hence bridge the vocabulary gap, while they have led to impressive improvements in natural language processing (NLP) tasks [10, 15, 32]. However, learning embeddings in a dynamic context is a non-trivial task, as trade-offs should be made between computational cost and result optimality. Most current approaches naively group data into time bins and learn embeddings separately for each one of these bins [16, 18, 20], which provides a sub-optimal solution given that they lead to a considerable reduction in training data, while decisions such as the size of the time bins are made ad-hocly.

This work extends embedding models in two directions for the temporal profiling of users: (a) it jointly models words and users in a semantic space that allows measuring the similarity between users and words when constructing a user profile, and (b) it directly models the joint dynamics of both users and language through time in the embedding space. We propose a dynamic user and word embedding model, abbreviated as DUWE. Having inferred the embeddings of words and users, we can generate top-K relevant and diversified keywords to profile users’ interests over time in streams of text.

Our contributions can be summarized as follows:
(1) We propose a dynamic user and word embedding algorithm that can jointly and dynamically model user and word representations in the same semantic space in the context of streams of documents in Twitter, such that the semantic similarity between users and words can be effectively measured.
(2) We propose a streaming keyword diversification model to diversify top-K keywords for characterizing users’ profiles over time.
(3) We verify the effectiveness of our proposed embedding model, the inference algorithm, and the streaming keyword diversification model, on user profiling in Twitter, and demonstrate that our method significantly outperforms state-of-the-art methods.

2 RELATED WORK

In what follows, we briefly discuss three lines of related work, user profiling, dynamic topic models, and dynamic embeddings.

2.1 User Profiling

User profiling has been gaining attention after the launch of the expert finding task at TREC 2005 enterprise track [11, 23]. Balog et al. [2, 3] proposed a generative language modeling approach to user profiling with the experiments conducted on a static document collection. Recent studies became aware of the importance of temporal user profiling. Temporal user profiling was first introduced in [36], where topical areas were organized in a predefined taxonomy and users’ interests was represented as a weighted static tree built directly by the ACM computing classification system. A probabilistic model was proposed in [14], where authors’ academic publications were used to learn how personal research interests evolve over time. All of the previous profiling algorithms are built on word frequencies. To the best of our knowledge, there is no user profiling algorithm that jointly models users and words in a semantic space and diversifies the keywords for profiling.

2.2 Dynamic Topic Models

The proposed DUWE model is a dynamic probabilistic model. A number of dynamic probabilistic topic models have appeared in the literature, including the topic over time model [38], the dynamic mixture model [39], and the topic tracking model [17]. All of these models learn the evolution of latent topics over time. More recent dynamic topic models include dynamic User Clustering Topic model (UCT) [25, 42], dynamic topic model for search result diversification [26], collaborative user clustering topic model for streams [28], and Dynamic Clustering Topic model (DCT) [24]. In this work, we take a different approach that pivots on neural embedding models while at the same time we compare our approach to the state-of-the-art dynamic topic models for user profiling [25].

2.3 Dynamic Embeddings

Kulkarni et al. [20] and Mihalcea and Nastase [30] provide a detailed analysis on how word embeddings change over time by comparing with static word embedding models across different time periods. To model changes in word embeddings over time, several approaches have been proposed in the literature [16, 18]. Kim et al. [18] split the data into separate time bins and train a word2vec model [31, 32] within each bin. Word representations obtained over a time bin are used to initialize the ones to be trained over the next time bin. Similarly, Hamilton et al. [16] also split the data into different time bins and train the embeddings over each bin. They assume that word embeddings at nearby time periods approximately differ by a global rotation in addition to a small semantic drift, and approximately compute this rotation. However, it is challenging to distinguish between semantic drifts of words over time and the artifacts of the approximate rotation. None of the two dynamic word embedding algorithms explicitly model the underlying dynamic process. Further, both of them optimize non-convex objective functions, resulting in an unstable representation of words – training word representations twice in the same time bin leads to different embeddings. Bamler and Mandt [4] extend a bayesian skip-gram model and propose a skip-gram filtering algorithm to a dynamic version for word embeddings but not for user embeddings, and how to jointly model two different entities in the same space is still unknown. To the best of our knowledge, this is the first attempt to explicitly model the evolution of users and words in a joint embedding space over time.

3 TASK FORMULATION

The task we address in this paper is the following: given a set of users and a stream of short text generated by them in Twitter, infer both user and word semantic representations over time, and dynamically identify a set of top-K relevant and diversified keywords to profile each of the users. The output of the algorithm is essentially a function \(f \) that satisfies:

\[
\mathcal{U}_t, \mathcal{D}_{\leq t} \xrightarrow{f} \mathcal{W}_t,
\]

where \(\mathcal{U}_t = \{u_i\}_{i=1}^{\mathcal{U}_t} \) is a set of users in the stream at time \(t \), with \(\vert \mathcal{U}_t \vert \) being the number of users, \(\mathcal{D}_{\leq t} = \{\mathcal{D}_j\}_{j=0}^{t} \) is the stream of documents generated by the users up to time \(t \), with \(\mathcal{D}_j \) being a set of documents generated by all the users at time \(t \), and \(\mathcal{W}_t = \{\mathcal{W}_{u_i, t}, \ldots, \mathcal{W}_{u_{\mathcal{U}_t}, t}\} \) are all users’ profiling results at time \(t \) with \(\mathcal{W}_{u_i, t} = \{w_{u_i, 1}, \ldots, w_{u_i, K, t}\} \) being the profiling result, i.e., the top-K diversified keywords, for user \(u_i \) at time \(t \).

In what follows, we describe our dynamic embedding method DUWE (See §4), based on which, we generate top-K diversified keywords for profiling each user at time \(t \) (See §5).

4 DYNAMIC EMBEDDING MODEL

In this section, we detail our proposed dynamic user and word embedding model, i.e., DUWE.

4.1 Preliminaries

The goal of DUWE is to capture the semantic representations of users, \(\mathcal{U}_t = \{u_i\}_{i=1}^{\mathcal{U}_t} \), and words, \(\mathcal{V}_t = \{v_{k, t}\}_{k=1}^{\mathcal{V}} \), over time. Here \(u_i \) and \(v_{k, t} \) represent the user \(u_i \)’s and the word \(v_{k, t} \)’s embeddings at time \(t \), respectively; \(\mathcal{V} \) is the size of the vocabulary \(\mathcal{V} \).

Our DUWE is a dynamic skip-gran model – a generalization of the well-known static skip-gran model, i.e., word2vec [32]. Given a corpus of documents, word2vec [32] collects evidence of word pairs for which \(z_{k, l} = 1 \), i.e., words \(v_k \) and \(v_l \) co-occur within a context window. Here, \(z_{k, l} \in \{0, 1\} \) is an indicator variable that denotes a draw for the word pair \((v_k, v_l) \) from the probability distribution \(p(z_{k, l} = 1 \mid v_k, v_l) = s(v_k^\top v_l) \), where \(s(x) \) is defined by a sigmoid function \(s(x) = \frac{1}{1 + \exp(-x)} \). The word pair \((v_k, v_l) \) with the indicator being \(z_{k, l} = 1 \) in a specific context window is called a positive example, while the word pair for which \(z_{k, l} = 0 \) is called a negative example. Let \(n_{k, l}^{-1} \) denote the number of times a word pair \((v_k, v_l) \) is observed in documents in a corpus. This is a sufficient statistic of the skip-gran model, and its contribution
where $n^+ \in \mathbb{R}^{V \times V}$ is the positive indicator matrix for word pairs with $n^+_{k,i}$ being their elements, respectively; $s(-x) = 1 - s(x)$, and $V = \{v_k\}_{k=1}^V$ being the embedding results of all the words in the vocabulary. To construct negative examples, the skip-gram model computes $n^-_{k,i}$ as $n^-_{k,i} \propto p(v_k)p(v_i)^{3/4}$, where $p(v_k)$ is the frequency of word v_k, so that n^- is well-defined up to a proportional constant factor that needs to be tuned experimentally. Instead of maximizing the likelihood in (1) directly, the skip-gram model tries to maximize its log likelihood:

$$
\log p(n^+ | V) = \sum_{k,i=1}^V n^+_{k,i} \log s(v_k^T v_i) + n^-_{k,i} \log s(-v_k^T v_i),
$$

(2)

where we denote $n^+ = (n^+, n^-)$.

The assumptions made in (1) and (2) are not realistic when it comes to the setting of streams, where the embeddings change over time. In addition, the skip-gram model does not model users' embeddings. In the following subsections, we detail the way we model users' and words' embeddings over time (§4.2) and apply the skip-gram filtering [4] to obtain their dynamic embeddings (§4.3).

4.2 Modeling Embeddings over Time

To model the dynamic user and word embeddings, following the static/dynamic word embedding models [4, 16, 18, 31, 32], we propose DUWE. DUWE builds up on the skip-gram model [32] and extends it by using a Kalman filter [29] as a prior for the time evolution of user and word embeddings. This allows the algorithm to share information, that is user-to-word and word-to-word co-occurring statistics (in a short document, e.g., a tweet in Twitter, the user and the words in the tweet associated with the user, and word themselves in the tweet are assumed to be co-occurring) across all time steps while still allows the embeddings to drift over time.

In DUWE, we consider a diffusion process of the vector representations of both users and words over time, and thus we let variances of the transition kernels for all the embeddings of the users be $\alpha_{u,t-1}^2 = (\alpha_{u,t-1}^2)_{i,j=1}^{V_U}$ with $\alpha_{u,t-1}$ being the variance of the transition kernel for user u's embedding transferring from $t-1$ to t. According to Kalman filtering [29], we can define $\alpha_{u,t-1}$ as:

$$
\alpha_{u,t-1}^2 = \varepsilon \cdot h(D_{t}, D_{t-1})(\tau_t - \tau_{t-1}),
$$

(3)

where ε is a local diffusion constant for user u's embedding, $D_{u,t} \equiv \{D_{u,t} \mid D_{u,t} \} \subseteq D_t \equiv \bigcup_{t'} D_{u,t'}$ is a set of documents generated by user u at time t, $g(D_{u,t}, D_{u,t-1})$ is a local diffusion value measuring the word distribution changes from previous time step $t-1$ to the current time step t for user u, and $(\tau_t - \tau_{t-1})$ is the time interval between subsequent observations in the stream. Let $D_{u,t} = [\theta_{u,t}, \theta_{v_2,t}, \ldots, \theta_{v_i,t}]$ be a vector representation for u's document set $D_{u,t}$ at time t, with its element $\theta_{u,t}$ being computed by an unsupervised language model with Dirichlet smoothing [12, 41] as:

$$
\theta_{u,t} = \frac{c(v_k; D_{u,t}) + \delta \cdot p(v_k \mid D_{u,t})}{\sum_{v} c(v; D_{u,t}) + \delta},
$$

(4)

where $c(v; D_{u,t})$ is the total number of times the word v appearing in the document set $D_{u,t}$, $p(v \mid D_{u,t})$ is the probability of the word v appearing in the whole corpus $D_{u,t}$, and δ is a smoothing parameter that is set to the average length of the documents in the corpus [41]. Then, we define the local diffusion value in (3) as:

$$
g(D_{u,t}, D_{u,t-1}) = 1 - \exp \left\{ - \frac{1}{2} \left(\text{KL}(D_{u,t} \mid D_{u,t-1}) + \text{KL}(D_{u,t-1} \mid D_{u,t}) \right) \right\},
$$

(5)

where $\text{KL}(\cdot)$ is the Kullback-Leibler (KL) divergence. According to (5), if $D_{u,t} = D_{u,t-1}$, we will have the variance $\alpha_{u,t-1} = 0$, which indicates that u's embedding at t does not change; and thus unlike other models, DUWE can avoid inappropriate drifts for user embeddings and distinguishes actual drifts from random noise.

Similarly, let the variance of the transition kernels for embeddings of all the words be $\beta_{v,t-1}^2 = (\beta_{v,t-1}^2)_{i,j=1}^{V}$, with $\beta_{v,t-1}$ being the variance of the transition kernel for any word embedding transferring from $t-1$ to t. Again, according to Kalman filtering [29], we can define $\beta_{v,t-1}$ as:

$$
\beta_{v,t-1}^2 = \eta \cdot h(D_{t}, D_{t-1})(\tau_t - \tau_{t-1}),
$$

(6)

where η is a local diffusion constant for words' embeddings and $h(D_{t}, D_{t-1})$ is a local diffusion value measuring the words' distribution changes from $t-1$ to t. Let $D_{t} = [\phi_{v_2,t}, \phi_{v_3,t}, \ldots, \phi_{v_i,t}]$ be a vector representation for document set D_t, with its element, $\phi_{v,t}$, being computed by an unsupervised language model with Dirichlet smoothing [12, 41] as:

$$
\phi_{v,t} = \frac{c(v; D_{t}) + \delta \cdot p(v \mid D_{t})}{\sum_{v} c(v; D_{t}) + \delta},
$$

(7)

where $c(v; D_{t})$ is the total number of times the word v appearing in the document set D_t. Then, with (7) we define and compute the local diffusion value in (6) as:

$$
h(D_{t}, D_{t-1}) = 1 - \exp \left\{ - \frac{1}{2} \left(\text{KL}(D_{t} \mid D_{t-1}) + \text{KL}(D_{t-1} \mid D_{t}) \right) \right\}.
$$

(8)

According to (8), if $D_{t} = D_{t-1}$, we will have the variance $\beta_{t-1} = 0$, which indicates that word embeddings at t are modeled to remain unchanged; and thus unlike other models, our DUWE can avoid inappropriate drifts for word embeddings and distinguish actual drifts from random noise.

To model $\tilde{p}(U_t \mid U_{t-1})$, that is the the probability of user embedding (before normalization), U_t, at current time step, t, given the user embedding at the previous time step, $t - 1$, U_{t-1}, we add a Gaussian prior with mean 0 and variance $\sigma_U^2 = (\sigma_U^2)_{i,j=1}^{V_U}$, which prevents the user embedding vectors from growing too large. Thus, $\tilde{p}(U_t \mid U_{t-1}) \propto N(U_t - 1, \sigma_U^2 \cdot I \cdot N(0, \sigma_U^2 \cdot I))$.

(9)

where $N(\cdot, \cdot)$ is a Gaussian distribution, and I is an identity matrix. Similarly, to model $\tilde{p}(V_t \mid V_{t-1})$, that is the probability of word embedding (before normalization) at t, V_t, given the word embedding results at $t - 1$, V_{t-1}, we add a Gaussian prior with mean 0 and
4.3 Inference

The following derivation follows closely the skip-gram filtering algorithm proposed by Bamber and Mandt in [4]. To infer the users’ and words’ embedding results at time step t, U_t and V_t, we start by formulating a joint distribution of our DUWE model, i.e., (13), over $m_{\alpha t}^T$ and $n_{\beta t}^T$, and the users’ and words’ embeddings $U_{\leq t}$ and $V_{\leq t}$ across all the time. Accordingly, we are interested in the posterior distribution over $U_{\leq t}$ and $V_{\leq t}$ conditioned on the statistics information $m_{\alpha t}^T$ and $n_{\beta t}^T$ as follows:

$$p(U_{\leq t}, V_{\leq t} | m_{\alpha t}^T, n_{\beta t}^T) = \frac{p(m_{\alpha t}^T, n_{\beta t}^T, U_{\leq t}, V_{\leq t})}{\int p(m_{\alpha t}^T, n_{\beta t}^T, U_{\leq t}, V_{\leq t}) dU_{\leq t} dV_{\leq t}}. \quad (14)$$

The Evidence Lower Bound. It is intractable to compute the denominator in (14), i.e., the normalization term. Variational inference transforms the problem of approximating a posterior (conditional) distribution into an optimization problem [5, 35]. The idea is to posit a simple family of distributions over the latent variables and find the member of the family that is closest in KL divergence to the posterior distribution. Accordingly, we propose a variational inference algorithm to approximately infer $U_{\leq t}$ and $V_{\leq t}$. Let $\lambda_{\leq t}$ be the free parameters of a variational distribution $q_{\lambda_{\leq t}}(U_{\leq t}, V_{\leq t})$. Here, $\lambda_{\leq t} = (\lambda_U^t)_{t \leq t}$ summarizes all parameters of the variational distribution from time 0 to t. The goal of our inference algorithm is to approximate the posterior, i.e., (14), with the simpler variational distribution $q_{\lambda_{\leq t}}(U_{\leq t}, V_{\leq t})$ by minimizing the KL divergence to the posterior. Minimizing the KL divergence is equivalent to maximizing the following Evidence Lower Bound (ELBO) [35]:

$$\mathcal{L}(\lambda_{\leq t}) = \mathbb{E}_{q_{\lambda_{\leq t}}(U_{\leq t}, V_{\leq t})} [\log p(m_{\alpha t}^T, n_{\beta t}^T, U_{\leq t}, V_{\leq t})] - \mathbb{E}_{q_{\lambda_{\leq t}}(U_{\leq t}, V_{\leq t})} [\log q_{\lambda_{\leq t}}(U_{\leq t}, V_{\leq t})]. \quad (15)$$

Black Box Variational Inference. For a restricted class of models, their ELBO can be computed in a closed-form [5]. However, our embedding model is non-conjugate and thus can not be computed in a closed-form. Instead, we propose a variational inference algorithm, which is based on black-box variational inference [35]. Our inference algorithm iteratively updates the variational distribution $q_{\lambda_{\leq t}}(U_{\leq t}, V_{\leq t})$ given the statistics $m_{\alpha t}^T$ and $n_{\beta t}^T$ from 0 to t. Therefore, we define a variational distribution that is factorized across all time steps up to t, i.e., let $q_{\lambda_{\leq t}}(U_{\leq t}, V_{\leq t}) = \prod_{t=1}^T q_{\lambda_U^t}(U_t, V_t)$. We adopt the mean-field approximation inference strategy, and thus factorize the distribution $q_{\lambda_U^t}(U_t, V_t)$ at t as:

$$q_{\lambda_U^t}(U_t, V_t) = q_{\lambda_U^t}(U_t) \cdot q_{\lambda_V^t}(V_t)$$

$$= \prod_{k,l=1}^V N(u_{k,t}; \mu_{u_{k,t}}, \sigma^2_{u_{k,t}}) \cdot \prod_{k,l=1}^V N(v_{k,t}; \mu_{v_{k,t}}, \sigma^2_{v_{k,t}}). \quad (16)$$

where $\mu_{u_{k,t}}$ and $\mu_{v_{k,t}}$ are the means of the user u_k’s and the word v_k’s embeddings at t, respectively; and $\sigma^2_{u_{k,t}}$ and $\sigma^2_{v_{k,t}}$ are the corresponding variances, respectively. At t, given $m_{\alpha t}^T$ and $n_{\beta t}^T$, and the fact that $\lambda_{t-1}, U_{\leq t-1}$ and $V_{\leq t-1}$ have been obtained, the goal of our inference algorithm is to infer the variational parameters in $q_{\lambda_U^t}(U_t, V_t)$ at t, i.e., $\lambda_t = \{\mu_{u_{k,t}}, \sigma^2_{u_{k,t}}, \mu_{v_{k,t}}, \sigma^2_{v_{k,t}}\}_{k=1}^V$. As our model is a Markovian dynamic system (see Fig. 1), we have the following recursion:

$$p(m_{\alpha t}^T, n_{\beta t}^T, U_{\leq t}, V_{\leq t}) = p(U_{\leq t}, V_{\leq t} | m_{\alpha t}^T, n_{\beta t}^T) \cdot p(m_{\alpha t}^T, n_{\beta t}^T) \cdot p(U_{\leq t}, V_{\leq t}).$$

$$\propto p(U_{\leq t}, V_{\leq t} | m_{\alpha t}^T, n_{\beta t}^T) = p(U_{\leq t}, V_{\leq t} | m_{\alpha t}^T, n_{\beta t}^T) \cdot p(V_{\leq t} | m_{\alpha t}^T, n_{\beta t}^T) \cdot p(U_{\leq t} | m_{\alpha t}^T, n_{\beta t}^T) \cdot p(V_{\leq t} | m_{\alpha t}^T, n_{\beta t}^T) \cdot p(U_{\leq t} | m_{\alpha t}^T, n_{\beta t}^T) \cdot p(V_{\leq t} | m_{\alpha t}^T, n_{\beta t}^T).$$
where the mean

\[Y_t \]

\[\mu_{0,t} \]

\[\sigma^2_{0,t} \]

\[\lambda_t \]

\[\gamma(m_t, \lambda_t) \approx p(n_t | V_t^1) \]

is computed by (2), and

\[p(n_t^t | V_t) \approx p(U_t, V_t | m_{t-1}^t) \times \]

\[p(m_{t}^t | V_t) p(V_t | n_{t-1}^t) \].

(17)

Substituting (17) into (15), the ELBO in (15) therefore separates into a sum of terms from 0 to the current time \(t \), i.e.,

\[\mathcal{L}(\lambda_{t}) = \mathcal{L}(\lambda_{t}) + \mathcal{L}(\lambda_{t}) \text{ for time step } t \text{ being the following:} \]

\[\mathcal{L}(\lambda_t) = \mathbb{E}_{q_{\lambda_t}(U_t, V_t)}[\log p(m_{t}^t | U_t, V_t)] + \]

\[\mathbb{E}_{q_{\lambda_t}(U_t, V_t)}[\log p(U_t, V_t | m_{t-1}^t)] + \]

\[\mathbb{E}_{q_{\lambda_t}(V_t)}[\log p(n_t^t | V_t)] + \mathbb{E}_{q_{\lambda_t}(V_t)}[\log p(V_t | n_{t-1}^t)] + \]

\[\mathbb{E}_{q_{\lambda_t}(U_t, V_t)}[\log q_{\lambda_t}(U_t, V_t)]. \]

(18)

where similar to (2), \(\log p(m_{t}^t | U_t, V_t) \) can be computed as:

\[\log p(m_{t}^t | U_t, V_t) = \sum_{i=1}^{k=1} m_{i,k}^t \log s(u_i V_k) \]

\[m_{i,k}^t \log s(-u_i V_k) \].

(19)

\[\log p(n_t^t | V_t) \] is computed by (2), and \(\log q_{\lambda_t}(U_t, V_t) \) can be computed according to (16), respectively; and thus their corresponding expectations can be computed easily. However \(p(U_t, V_t | m_{t-1}^t) \) and \(p(V_t | n_{t-1}^t) \) in (18) are still intractable. Applying the variational inference results in the previous step,

\[q_{\lambda_{t-1}}(U_{t-1}, V_{t-1}) \approx p(U_{t-1}, V_{t-1}) \text{ and } q_{\lambda_{t-1}}(V_{t-1}) \approx p(V_{t-1}), \]

we can approximate these two probabilities, respectively:

\[p(U_t, V_t | m_{t-1}^t) \approx \mathbb{E}_{q_{\lambda_{t-1}}(U_{t-1}, V_{t-1})}[p(U_t, V_t | U_{t-1}, V_{t-1})] \]

\[= \mathbb{E}_{q_{\lambda_{t-1}}(U_{t-1}, V_{t-1})}[p(U_t, V_t | U_{t-1}, V_{t-1})] \]

\[\approx \mathbb{E}_{q_{\lambda_{t-1}}(V_{t-1})}[p(V_t | V_{t-1})]. \]

(20)

\[p(V_t | n_{t-1}^t) \approx \mathbb{E}_{q_{\lambda_{t-1}}(V_{t-1})}[p(V_t | V_{t-1})] \]

\[\approx \mathbb{E}_{q_{\lambda_{t-1}}(V_{t-1})}[p(V_t | V_{t-1})]. \]

(21)

where \(p(U_t, V_t | U_{t-1}, V_{t-1}) = p(U_t | U_{t-1}) p(V_t | V_{t-1}) \), which are obtained by (11) and (12), respectively. Thus, the resulting approximate probability of (20) is a fully factorized distribution:

\[p(U_t, V_t | m_{t-1}^t) \approx \prod_{i=1}^{k=1} \mathcal{N}(u_i, \mu_t, \psi_{u,t}^2, I) \times \]

\[\mathcal{N}(v_{k,t}, \mu_{t,2}, \psi_{k,t}^2, I). \]

where the mean \(\mu_{t,1} \) and the variance \(\psi_{t,1}^2 \) are:

\[\tilde{\mu}_{t,1} = \mu_{t,1} - \sigma_{u,t-1}^2 + \sigma_{u,t-1}^2 \mu_{t,1,t-1} \]

\[\tilde{\mu}_{t,1} = \left[\sigma_{u,t-1}^2 + \sigma_{u,t-1}^2 \right]^{-1} \mu_{t,1,t-1} \]

\[\tilde{\psi}_{t,1}^2 = \left[\sigma_{u,t-1}^2 + \sigma_{u,t-1}^2 \right]^{-1} + \left[\mu_{t,1} - \mu_{t,1} \right]^2 \]

(23)

(24)

The equations for the word \(u_i \)’s mean \(\tilde{\mu}_{t,1} \) and variance \(\tilde{\psi}_{t,1}^2 \), applied in both (20) and (21) are analogous to (23) and (24), respectively. The proof of (23) and (24) is detailed in Appendix A. Similarly, the resulting approximate probability of (21) is:

\[p(V_t | n_{t-1}^t) \approx \prod_{k=1}^{k=1} \mathcal{N}(v_k, \mu_t, \psi_{k,t}^2, I). \]

(25)

Inserting (22) and (25) into (18) results in the fact that all the expectations in (18) now involve only Gaussians and can be carried-out analytically; and more importantly, our ELBO in (18) becomes a convex objective and thus training the embeddings twice on the same data would result in the same embedding results in contrast to other embedding models with non-convex objectives. We, therefore, can optimize our ELBO at time \(t \) via applying the black-box variational inference using the reparameterization trick [19, 35, 37].

We develop an unbiased estimator of the gradient of (18), which can be computed from samples from the variation posterior. To do this, we write the gradient of our ELBO in (18) as expectation with respect to the variational distributions as:

\[\nabla_{\lambda_t} \mathcal{L}(\lambda_t) = \]

\[\mathbb{E}_{q_{\lambda_t}(U_t, V_t)}[\mathcal{L}(\lambda_t, U_t, V_t)] \log q_{\lambda_t}(U_t, V_t) \log p(m_{t}^t | U_t, V_t)] + \]

\[\mathbb{E}_{q_{\lambda_t}(U_t, V_t)}[\mathcal{L}(\lambda_t, U_t, V_t)] \log p(U_t, V_t | m_{t-1}^t) + \]

\[\mathbb{E}_{q_{\lambda_t}(V_t)}[\mathcal{L}(\lambda_t, V_t)] \log p(V_t | n_{t-1}^t)] + \]

\[\mathbb{E}_{q_{\lambda_t}(U_t, V_t)}[\mathcal{L}(\lambda_t, U_t, V_t)] \log q_{\lambda_t}(U_t, V_t)]. \]

(26)

The proof that the gradient of (18) is (26) is omitted here but analogous proof can be found in [35]. With (26) we compute noisy unbiased gradients of our ELBO at time \(t \) with S Monte Carlo samples from the variational distribution:

\[\nabla_{\lambda_t} \mathcal{L}(\lambda_t) = \frac{1}{S} \sum_{s=1}^{S} \mathcal{L}(\lambda_t, U_s, V_s) \log q_{\lambda_t}(U_s, V_s) \log p(m_{t}^t | U_s, V_s)] + \]

\[\mathbb{E}_{q_{\lambda_t}(U_s, V_s)}[\mathcal{L}(\lambda_t, U_s, V_s)] \log p(U_s, V_s | m_{t-1}^t) + \]

\[\mathbb{E}_{q_{\lambda_t}(V_s)}[\mathcal{L}(\lambda_t, V_s)] \log p(V_s | n_{t-1}^t)] + \]

\[\mathbb{E}_{q_{\lambda_t}(U_s, V_s)}[\mathcal{L}(\lambda_t, U_s, V_s)] \log q_{\lambda_t}(U_s, V_s)]. \]

(27)

With (27), we can use stochastic optimization to optimize our ELBO in (18) and update the parameter \(\lambda_t^{i+1} \) at the \(i \)-1-th iteration with:

\[\lambda_t^{i+1} = \lambda_t^{i} + \rho_t^{i+1} \nabla_{\lambda_t} \mathcal{L}(\lambda_t). \]

(28)

where \(\rho_t^{i+1} \) is the learning rate at the \(i \)-1-th iteration. Once the iterations converge, we obtain the optimal embeddings for users and words at time \(t \), \(U_t \) and \(V_t \) as:

\[(U_t, V_t) = \arg \max q_{\lambda_t}(U_t, V_t) = \left(\frac{[u_i | v_j]}{[u_i | v_j]} \right) \]

(29)

where \(\lambda_t^* \) is the optimal parameter at \(t \) after the iterations have been converged. In practice, to speed up the convergence, we apply reparameterization trick [37] to (28) during the iterations.

5 STREAMING KEYWORD DIVERSIFICATION MODEL

After user and word embeddings are obtained, inspired by PM-2 [13], a static diversification method, we propose a streaming
Thus we propose to obtain the keyword and diversified keywords for profiling users’ interests at time t. For each user u at t, SKDM assigns the current seat to the cluster c∗ (step 11). The keyword to fill this seat is the one from c∗ with the largest quotient (step 12). The process (steps 9 to 15) repeats until we get K diversified keywords for Wut. The order in which a keyword is appended to Wut determines its ranking for the profiling. After the process is done, we obtain a set of diversified keywords Wut that profile the interest of a user at t.

Obviously, the user and word dynamic embeddings can be computed offline and the top-K keywords obtained by SKDM can be performed offline as well. Thus, our profiling algorithm is efficient.

6 EXPERIMENTAL SETUP

6.1 Research Questions

We seek to answer the following research questions that guide the remainder of the paper:

(RQ1) Can DUWE capture better semantic representations of users and words for user profiling, compared to state-of-the-art non-dynamic and dynamic embedding and topic models?

(RQ2) How the length of time bins affects the DUWE model?

(RQ3) How good the representations inferred by DUWE are?

(RQ4) Can DUWE capture the dynamics of both user and word embeddings and make the embedding results explainable?

(RQ5) Is DUWE sensitive to the embedding dimensions?

6.2 Dataset

In order to answer our research questions, we work with a publicly available dataset collected from Twitter [25].1 In details, the dataset randomly sampled 1,375 users from Twitter, and all users’ tweets posted from the beginning of their registrations up to May 31, 2015. Totally, it has 3.78 million tweets with each tweet having its own timestamp. The average length of the tweets is 12 words.

We obtain two types of Ground Truth: one for evaluating Relevance-oriented (RGT) performance and another for evaluating Diversity-oriented (DGT) performance. To create the RGT, we split the dataset into 5 different partitions of time periods, i.e., a week, a month, a quarter, half a year and a year, respectively. For each Twitter user at every specific time period, an annotator was asked to generate a ranked list of top-K relevant keywords (the number of which was decided by the annotators) that can summarize the user’s interests at that time period. In total, 68 annotators took part in the labelling with each of them labelling about 5 Twitter users for these 5 different partitions. To create DGT, as it is expensive to manually obtain aspects of the keywords from annotators, we cluster the relevant keywords with their embeddings2 into 15 categories3 by K-means. Relevant keywords within a cluster are regarded as being relevant to the same aspect in the DGT ground truth.

6.3 Baselines and Settings

We make comparisons between the proposed DUWE model and the following state-of-the-art algorithms for user profiling:

1Available from https://bitbucket.org/sliang/uct-dataset/get/UCT-Dataset.zip.
3Information of the categories is available from http://dmoztools.net.
Non-dynamic embedding models:

Skip-Gram Model (SGM): This is the popular static word2vec embedding model [31, 32].

Distributed Representations of Documents (DRD): This is the popular static doc2vec embedding model [22].

Dynamic traditional profiling model:

Predictive Language Model (PLM). It models the dynamics of personal interests via a probabilistic language model [14].

Dynamic topic model:

User Clustering Topic model (UCT). This is a dynamic multinomial Dirichlet mixture user clustering topic model [25], which can capture users’ time-varying topic distributions.

Dynamic embedding models:

Dynamic Independent Skip-Gram model (DISG). It splits the data into different time bins, independently initializes words’ representations and obtains the words’ embeddings at each bin by word2vec [31, 32]. Word embeddings at nearby bins are then made comparable by approximating orthogonal transformations [16].

Dynamic Pre-initialized Skip-Gram model (DPSG). This approach [18] is the same as DISG, but with word vectors being initialized with values from the previous time bin.

Dynamic Pre-initialized Distributed Representations of documents (DIDR). This approach is the same as DISG, but obtains embeddings of documents rather than words at each bin by doc2vec [22].

Dynamic Pre-initialized Distributed Representations of documents (DPDR). This approach is the same as DIDR, but with document vectors being initialized with the average values of the words in the documents from the previous bin.

SGM and DRD are static methods, while the others are dynamic ones. We do not include other dynamic topic models as baselines, e.g., topic tracking model [17], since Liang et al. [25] have demonstrated that UCT outperforms these topic models. For all the word embedding baseline models, the average of the embeddings has been used to represent users.

Following previous work on embeddings [16, 18, 31, 32], we set the number of dimensions in both DUWE and in the baseline methods to 300. For fair comparisons, we set the number of topics in the baseline topic models to 100 as well (we found that the performance is almost consistent once the dimensions of the representations in embeddings and the number of topics in topic models are as large as ~100). Following word2vec [31, 32], for both DUWE and the embedding baselines, we set the number of negative word pairs \((v_k, v_j)\) samples at time \(t\) to \(n_{k, l, t} = \left(\sum_{k', l', t - 1} n_{k', l', t} \right) \cdot \xi \cdot p_t(\xi) \cdot p'_t(l)\), where \(\xi\) is the ratio of negative to positive word pairs and is set to 1.0, \(p_t(\xi) = \frac{\sum_{k', l', t} n_{k', l', t}}{\sum_{k, l, t} n_{k, l, t}}\), and \(p'_t(l) = \frac{p_t(l)}{p_t(l) + p_t(l')}\). We follow the same way to define the number of negative user-word pair \((u_i, v_j)\) samples in \(m^-\) in our DUWE. For tuning the parameters in DUWE and all the baselines, we use a 70%/20%/10% split of the users in the dataset for our training, validation and test sets, respectively. We train DUWE for different values of the parameters \(\epsilon\) in (3), \(\eta\) in (6), \(\alpha_0^2\) in (9) and \(\beta_0^2\) in (10); \(\epsilon, \eta, \alpha_0^2\) and \(\beta_0^2\) take values in \([0.001, 0.01, 0.1, 0.2, \ldots, 1, 2, \ldots, 10]\), respectively (elements in \(\alpha_0^2\) are set to be equal at each training time; the same setting to those in \(\beta_0^2\)). The optimal \(\epsilon, \eta, \alpha_0^2\) and \(\beta_0^2\) values are decided based on the validation set, and evaluated on the test set. The train/validation/test splits are permuted until all users were chosen once for the test set. We repeat the experiments 10 times and report the average results. For initialization in DUWE and other embedding baselines, we let words’ embeddings at \(t = 0\) be those pre-trained by word2vec and users’ embeddings be the average of the words embeddings associated with the users. We adopt Adadelta for setting our learning rates \(\rho_t^{k+1}\) in (28).

6.4 Evaluation Metrics

For evaluation purpose, we use standard relevance-oriented evaluation metrics, Pre@\(k\) (Precision at \(k\)), NDCG@\(k\) (Normalized Discounted Cumulative Gain at \(k\)), MRR@\(k\) (Mean Reciprocal Rank at \(k\)), and MAP@\(k\) (Mean Average precision at \(k\)) [12], and diversity-oriented metrics, Pre-IA@\(k\) (Intent-Aware Precision at \(k\)) [1], \(\alpha\)-NDCG@\(k\) [9], MRR-IA@\(k\) [1], MAP-IA@\(k\) [1]. We also propose semantic versions of the original metrics, denoted as Pre-S@\(k\), NDCG-S@\(k\), MRR-S@\(k\), MAP-S@\(k\), Pre-IA-S@\(k\), \(\alpha\)-NDCG-S@\(k\), MRR-IA-S@\(k\), and MAP-IA-S@\(k\), respectively. Here the only difference between the original metrics and the corresponding semantic ones is the way to compute the relevance score of a retrieved keyword \(v^*\) to ground truth keyword \(v_{gt}\). For original metrics, we let the relevance score be 1 if and only if \(v^* = v_{gt}\), otherwise be 0; whereas for the semantic versions, we let the relevance score be the cosine similarity between the word embedding vectors of \(v^*\) and \(v_{gt}\), computed as \(\cos(v^*, v_{gt})\). Since we are usually restricted to choose a small number of keywords to describe a user’s profile, we compute the scores at depth 10, i.e., let \(k = 10\) in evaluation. For simplifying the notation we use \(M\) to refer to \(M@k\), where \(M\) is any metrics. Additionally, we adopt Perplexity [6] to evaluate the generalization performance of the models.

7 RESULTS AND DISCUSSIONS

In this section, we answer the research questions listed in §6.1, analyze the experimental results, and provide discussions.

7.1 Overall Profiling Performance

RQ1: We compare the profiling performance of our DUWE with that of the baselines listed in §6.3.

Tables 1 and 2 compare the relevance and diversity profiling performance of DUWE to that of the baselines, averaged across all the testing time periods on every month, and evaluated by the relevance and diversity ground truths, RGT and DGT, respectively. The ranking of models with respect to the relevance and diversity performance is consistent across different evaluation metrics, and in particular this order is observed: DUWE > DPDR > DPSG > UCT > DIDR > DRD > PLM > DRD > UCT > DRD > GMM. Here > denotes the performance difference is statistically significant at a significance level of 95% with Student’s two tailed t-test, and ~ denotes the difference is not statistically significant. The finding DUWE > DPDR > DPSG indicates that embeddings of both users and words produced by our DUWE work better than those by state-of-the-art dynamic embedding models. The finding that DUWE, DPDR, DPSG and UCT outperform DIDR and DISG indicates that the strategies
of tracking embeddings over time upon the embeddings at previous time steps work better than those of simply splitting the data into separate time bins and then obtaining embeddings from each of the bin as dynamic embedding results. All dynamic models work better than static models, i.e., DRD and SGM, which illustrates that embeddings need to be modeled over time for user profiling.

7.2 Length of Time Bins

RQ2: We vary the length of time bins to analyze if the models are sensitive to the length and the performance is consistent over time.

Fig. 2 reports the relevance and diversity performance using Precision, NDCG, Pre-IA and \(\alpha\)-NDCG as representative metrics. As it can be observed, DUWE consistently performs better than the rest of the models, with the performance improving as the length of time periods increases from a quarter to a year, DUWE reaches a plateau but still outperforms the best baselines. All of these findings demonstrate that dynamic embeddings generated by our DUWE work better than static models, i.e., DRD and SGM, which illustrates that embeddings need to be modeled over time for user profiling.

7.3 Quality of Semantic Representations

RQ3: We now evaluate the performance of DUWE and the baseline models in terms of perplexity, which is widely used as an evaluation metric to evaluate the generation of representations [6].

Perplexity is monotonically decreasing with the likelihood of the documents, and is algebraically equivalent to the inverse of the geometric mean per-word (in our case per-user and per-word) likelihood. To evaluate the quality of representations, we follow that in [6, 24] and compute the perplexity [6, 24] as

\[
\text{Perplexity}(D_{\leq t}) = \exp \left(- \frac{1}{N_d} \sum_{t'=0}^{t} \sum_{d} \log p(v_{u_d, t'}|D_{\leq t}) \right),
\]

where \(N_d\) is the number of words in document \(d\), and \(p(v_{u_d, t'}|D_{\leq t})\) is the cosine similarity between the embedding of the user associated with \(d\) and the best baseline DPDR for profiling the user at every time step work better than those of simply splitting the data into separate time bins and then obtaining embeddings from each of the bin as dynamic embedding results. All dynamic models work better than static models, i.e., DRD and SGM, which illustrates that embeddings need to be modeled over time for user profiling.

7.4 Dynamic Representations

RQ4: Next, we examine whether DUWE outperforms baselines on capturing the dynamics of embeddings to user profiling in streams.

We randomly choose one example user and display the top-\(K\) words from the ground truth and the top-\(K\) words generated by DUWE and the best baseline DPDR for profiling the user at every
quarter, respectively. Looking as the ground truth keywords in Table 3, the user’s interests first center on the aspects “sports” and “plant” from April to June 2014 and then move to the aspects “education” and “electronic products” from April to May 2015. Compared to the best baseline, DUWE is more effective to track the user’s interests over time and retrieve top-K relevant and diverse keywords to profile the user at different quarters, which demonstrates the high quality of the dynamic representations generated by our dynamic user and word embedding model, DUWE.

7.5 Dimensions of Representations

RQ5: Finally, we vary the sizes of dimensions of the embeddings in the models and evaluate their performance.

Fig. 4 shows the Precision and NDCG performance of DUWE and the best baselines, DPDR, DPSG and UCT, on different sizes of dimensions varying between 10 and 300. Performance evaluated by other metrics is not reported here, as it follows the same pattern. It is clear from the figure that the performance increases with the number of dimensions both in DUWE and the baselines, when the number of dimensions goes from 10 to ~100. The performance of all the models seems to be reaching a plateau when dimensions increase from ~100 to 300. At all different sizes, DUWE keeps outperforming all other baselines. All of these findings demonstrate another merit of our DUWE: it is not sensitive to the size of dimensions of the embeddings when the size is set to be large enough, and it is able to consistently improve user profiling performance with various sizes of the dimensions over the best embedding models.

8 CONCLUSION

We have studied the problem of user profiling over time in Twitter. To tackle the problem, we have proposed a dynamic user and word embedding model, DUWE, that is the first attempt to simultaneously model user and word embeddings over time in the same space. DUWE adopts a skip-gram model to a dynamic setup and trains on all the data up to the current time step, which allows end-to-end training. This leads to stable, continuous embedding trajectories, smooth out noise, avoid inappropriate semantic drifts, and share user-to-word and word-to-word statistics information across all the steps. We closely follow Bamber and Mandt’s skip-gram filtering algorithm [4] to infer the dynamic embeddings of users and words in Twitter. To diversify top-K keywords for users’ profiling over time, we have proposed a streaming keyword diversification model, SKDM. Experimental results on a publicly available dataset demonstrate the effectiveness of the proposed algorithms.

There are many aspects to be explored in future work, e.g., how to generate phrases instead of keywords for profiling, whether there other ways to model and infer user embeddings over time, whether there other datasets to verify our embedding model, or whether we can apply DUWE to other applications, e.g., rank aggregation [27], and verify the effectiveness of the embeddings there.

Acknowledgments

This work was supported by the King Abdullah University of Science and Technology (KAUST), Saudi Arabia. We thank Dr. R. Bamber and Dr. S. Mandt for their suggestion on the derivation of the inference.

A DERIVATIONS OF \overline{y} AND $\overline{\tilde{y}}$

According to (20), we have $p(U_t, V_t | m_{t-1}^z) \approx \int q_{\lambda_{t-1}}(U_{t-1}, V_{t-1}) p(U_t, V_t | U_{t-1}, V_{t-1}) dU_{t-1} dV_{t-1} = \int q_{\lambda_{t-1}}(U_{t-1}) p(U_t | U_{t-1}) dU_{t-1} \int q_{\lambda_{t-1}}(V_{t-1}) p(V_t | V_{t-1}) dV_{t-1}$. In the following, we only show the derivation for $\mathbb{E}_{q_{\lambda_{t-1}}(U_{t-1})}[p(U_t | U_{t-1}) \cdot \mathbb{E}_{q_{\lambda_{t-1}}(V_{t-1})}[p(V_t | V_{t-1})] \leq \mathbb{E}_{q_{\lambda_{t-1}}(V_{t-1})} p(V_t | V_{t-1}) dV_{t-1}$ is essentially the same. Applying (9) and (16), and inserting the expressions for the Gaussian distributions, we have the following:

$$
\mathbb{E}_{q_{\lambda_{t-1}}(U_{t-1})} p(U_t | U_{t-1}) = \int q_{\lambda_{t-1}}(U_{t-1}) p(U_t | U_{t-1}) dU_{t-1} =
\alpha \int \mathcal{N}(U_{t-1}; \mu_{t-1}, \sigma_{t-1}^2) \mathcal{N}(U_t | \alpha_0, \sigma_0^2) \mathcal{N}(U_{t-1}; 0, \sigma_0^2) dU_{t-1}$$

$$\propto \int \exp \left[-\frac{1}{2} \left(\frac{(U_{t-1} - \mu_{t-1})^2}{\sigma_{t-1}^2} + \frac{(U_t - U_{t-1})^2}{\alpha_0^2} + \frac{U_t^2}{\alpha_0^2} \right) \right] dU_{t-1},$$

(30)

where let σ_{t-1}^2 and μ_{t-1} be abbreviated for the variances and means for all users’s embeddings U_{t-1}, respectively, and drop the constant factors and use a notation that is suitable for scalar values. In reality, σ_{t-1}^2 is a matrix, but since it is diagonal we can treat each component as an independent scalar. To carry out the integral in (30), we pull all terms that are independent of U_{t-1} out of it, and then (30) becomes:

$$\propto \exp \left[-\frac{1}{2} \frac{\mu_{t-1}^2}{\sigma_{t-1}^2} \right] \times \exp \left[-\frac{1}{2} \left(\frac{1}{\sigma_{t-1}^2} + \frac{1}{\alpha_0^2} \right) U_{t-1}^2 \right] \times \int \exp \left[-\frac{1}{2} \frac{1}{\sigma_{t-1}^2} \right] \times \frac{1}{\alpha_0^2} \ U_{t-1}^2 dU_{t-1},$$

(31)

where the first factor is a constant (independent of U_t), which will be cancelled out. In the last factor, we sort in powers of U_{t-1}, and can carry out the Gaussian integral in (31) by completing the square. Thus, (31) becomes:

$$\propto \exp \left[-\frac{1}{2} \frac{1}{\sigma_{t-1}^2} \right] \times \exp \left[-\frac{1}{2} \frac{1}{\alpha_0^2} \ U_{t-1}^2 \right] \times \int \exp \left[-\frac{1}{2} \frac{1}{\sigma_{t-1}^2} \right] \times \frac{1}{\alpha_0^2} \ (U_{t-1} - A)^2 dU_{t-1},$$

(32)
where $A = \left(1/\sigma_{t-1}^2 + 1/\alpha_t^2 \right)^{-1/2} \left(\mu_{t-1}/\sigma_{t-1}^2 + U_t/\alpha_t^2 \right)$. The integral in (32) leads to a constant factor (independent of U_t) because it is invariant under a constant shift of the integration variable, which will be cancelled out as well. Thus, (32) becomes:

$$\exp \left\{ -\frac{1}{2} \left(\frac{1}{\alpha_t^2} + \frac{1}{\psi_t^2} \right) \right\} = \exp \left\{ -\frac{1}{2} \left(\frac{1}{\alpha_t^2} + \frac{1}{\sigma_{t-1}^2} \right) \right\} U_t^2$$

and

$$\propto N \left(\mu_{t-1}/\sigma_{t-1}^2 + U_t/\alpha_t^2 \right),$$

where we let ψ_t and σ_{t-1}^2 abbreviate for the means and variances for all users’ embeddings U_t, respectively, and let:

$$\psi_t = \frac{1}{\alpha_t^2} + \frac{1}{\sigma_{t-1}^2 + \alpha_t^2}, \quad \text{and} \quad \sigma_{t-1}^2 = \frac{\mu_{t-1}}{\sigma_{t-1}^2 + \alpha_t^2},$$

which results in:

$$\psi_t = \left(\sigma_{t-1}^2 + 1/\alpha_t^2 \right)^{-1} \mu_{t-1},$$

and

$$\sigma_{t-1}^2 = \left(\sigma_{t-1}^2 + 1/\alpha_t^2 \right)^{-1} \left(1/\alpha_t^2 + 1/\psi_t^2 \right)^{-1},$$

REFERENCES

