Logic for social software
Pauly, M.

Citation for published version (APA):
Appendix A

Fixpoint Facts

Chapters 4 and 6 make use of fixpoint constructions to define long-term ability and iteration, respectively. This appendix recalls some standard results about fixpoints, namely, the Knaster-Tarski fixpoint theorem and the upward and downward hierarchies for fixpoint approximation. The material is standard, with the possible exception of theorem A.2, a generalization of the Knaster-Tarski fixpoint theorem.

Consider any monotonic operation on the nonempty set of states \(S \), i.e., any function \(F : \mathcal{P}(S) \rightarrow \mathcal{P}(S) \) such that \(X \subseteq Y \) implies \(F(X) \subseteq F(Y) \). We say that a set \(Z \subseteq S \) is a fixpoint of \(F \) iff \(F(Z) = Z \). \(Z \) is a least (greatest) fixpoint of \(F \) iff (1) \(Z \) is a fixpoint and (2) \(Z \) is a subset (superset) of every fixpoint of \(F \). Note that least and greatest fixpoints are unique. We denote the least fixpoint of \(F \) as \(\mu X. F(X) \) (the smallest set \(X \) such that \(F(X) = X \)) and the greatest fixpoint of \(F \) as \(\nu X. F(X) \) (the greatest set \(X \) such that \(F(X) = X \)).

For repeated application of the operation \(F \), we define the following downward and upward hierarchies by ordinal induction:

\[
F^\varnothing(X) = X \\
F^{\kappa+1}(X) = F(F^{\kappa}(X)) \\
F^{\lambda}(X) = \bigcup_{\kappa < \lambda} F^{\kappa}(X) \\
F^\varnothing(X) = X \\
F^{\kappa+1}(X) = F(F^{\kappa}(X)) \\
F^{\lambda}(X) = \bigcap_{\kappa < \lambda} F^{\kappa}(X)
\]

where \(\kappa \) and \(\lambda \) are ordinals and \(\lambda \) is a limit ordinal. In most cases, the upward hierarchy will be used for \(X = \emptyset \) and the downward hierarchy for \(X = S \), and for ease of notation, we use \(F^{\kappa} \) for \(F^{\kappa}(\emptyset) \) and \(F^{\kappa} \) for \(F^{\kappa}(S) \). A central result on fixpoints is the well-known Knaster-Tarski fixpoint theorem:

Theorem A.1 (Tarski [118]). If \(F : \mathcal{P}(S) \rightarrow \mathcal{P}(S) \) is any monotonic operation, then

1. \(\mu X. F(X) = \bigcap \{ Y \subseteq S | F(Y) = Y \} = \bigcap \{ Y \subseteq S | F(Y) \subseteq Y \} = \bigcup \{ F^{\kappa} \}
\]

where \(\kappa \) ranges over all ordinals of cardinality at most \(|S| \) and \(F^{\varnothing} \subseteq F^{\varnothing} \subseteq F^{\varnothing} \subset \ldots \).
Appendix A. Fixpoint Facts

2. \(\nu X.F(X) = \bigcup \{ Y \subseteq S \mid F(Y) = Y \} = \bigcup \{ Y \subseteq S \mid F(Y) \supseteq Y \} = \bigcap_{\kappa} F^{i\kappa} \), where \(\kappa \) ranges over all ordinals of cardinality at most \(|S| \) and \(F^{i0} \supseteq F^{i1} \supseteq F^{i2} \)

In section 6.5, a less well-known generalization of this theorem will allow us to reduce the complexity of a model-checking algorithm substantially. It is an easy consequence of the previous result.

Corollary A.2 (Emerson & Lei [46]). If \(F : \mathcal{P}(S) \to \mathcal{P}(S) \) is any monotonic operation, then

1. \(\mu X.F(X) = \bigcup_{\kappa} F^{i\kappa}(X_0) \) for any \(X_0 \subseteq F(X_0) \cap \mu X.F(X) \), where \(\kappa \) ranges over all ordinals of cardinality at most \(|S| \) and \(F^{i0}(X_0) \subseteq F^{i1}(X_0) \subseteq F^{i2}(X_0) \)

2. \(\nu X.F(X) = \bigcap_{\kappa} F^{i\kappa}(X_0) \) for any \(X_0 \supseteq F(X_0) \cup \nu X.F(X) \), where \(\kappa \) ranges over all ordinals of cardinality at most \(|S| \) and \(F^{i0}(X_0) \supseteq F^{i1}(X_0) \supseteq F^{i2}(X_0) \)

Finally, there are cases in which the fixpoint approximation provided by the upward and downward hierarchies is guaranteed to reach the fixpoint after at most \(\omega \) stages. A well-known sufficient condition for such a closure at \(\omega \) is disjunctivity. As defined in section 2.4.3, an operation \(F : \mathcal{P}(S) \to \mathcal{P}(S) \) is disjunctive iff for all \(V \subseteq \mathcal{P}(S) \) we have \(F(\bigcup_{X \in V} X) = \bigcup_{X \in V} F(X) \). Recall that disjunctivity implies monotonicity and that \(F(\emptyset) = \emptyset \). As an analogue to disjunctivity, call \(F \) conjunctive iff for all \(V \subseteq \mathcal{P}(S) \) we have \(F(\bigcap_{X \in V} X) = \bigcap_{X \in V} F(X) \). Also conjunctivity implies monotonicity and furthermore that \(F(S) = S \).

The following result shows that indeed disjunctivity (conjunctivity) is a sufficient condition for approximating the fixpoint after at most \(\omega \) steps. Note that there are weaker conditions such as continuity which are also sufficient (see, e.g., [37, 91]), but for our purposes the following result is exactly what we need.

Theorem A.3. If \(F \) is disjunctive then \(\mu X.F(X) = F^{i\omega} \), and if \(F \) is conjunctive then \(\nu X.F(X) = F^{i\omega} \).

Proof. Disjunctivity immediately implies that \(\bigcup_{i<\omega} F^{ii} \) is a fixpoint of \(F \), and given any fixpoint \(Z \) of \(F \) one can show by induction on \(i \) that \(F^{ii} \subseteq Z \) and consequently \(\bigcup_{i<\omega} F^{ii} \subseteq Z \).