Bose-Einstein condensation with high atom number in a deep magnetic trap

Dieckmann, K.

Citation for published version (APA):
Dieckmann, K. (2001). Bose-Einstein condensation with high atom number in a deep magnetic trap

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Acknowledgments

During the realization of this project I was collaborating and getting help and company from many colleagues and friends. To these people I would like to say thank you:

First, I would like to thank my promoter Jook Walraven for starting up the BEC project with rubidium and providing me with all the support it took to realize it. The scientific education he gave me in many inspiring discussions about physics is invaluable for me and was the basis for having a great time in his group.

With Martin Zielonkowski the first main goal, BEC, was achieved. I have found in him an enjoyable teammate who gave his contributions with patience, creativity and a wide understanding of physics especially during the Ort cloud measurements. I would not like to miss His moral support during the last year was very important.

The other mate was Igor Shvarchuck who solved, with the realization of the broad-area diode laser and the detection system, two difficult experimental tasks which were of the greatest importance for the successful realization of the experiment. With him I also shared the moment of achieving BEC. In our meager spare time I found out that he is a perfect teacher of ice-skating. I wish him all the best for the rest of his PhD period.

I would like to thank Matthias Weidemüller for the well organized supervision in the first year. With him the foundation for a working experiment was laid. After working some time alone it was of great importance that Robert Spreeuw from the University of Amsterdam got involved in the project providing a lot of physics input and being under all circumstances an enjoyable and important discussion partner.

The work of Pieter Valkering, the only Dutch person in the group aside from Jook, on the realization and simulation of evaporative cooling was of great help for the experiment.

As the experiment was started from the scratch only the strong support of many technicians made the fast realization of the experiment possible. The experiment was initialized at the University of Amsterdam with the help of Otto Höpfner, Bert Zwart, and Jost Overtoom, with the transfer of the setup to AMOLF as a perspective. At AMOLF, we experienced the all round support of Hans Alberda, Idsart Attema, Herman Ficke, Henk Neerings, Duncan Verheiden, Ton Vijftigsschild, Martijn Witlox. Each of them delivering precise and detailed, important items built with their experience and creativity. Especially, I would like to thank our group technician Hinco Schoenmaker, who almost always came up with solutions and immediate help. The result: The machine
ACKNOWLEDGMENTS

works fine, and the first BEC below sea level has been achieved.

For an experimentalist it is a luxury to share an office (non smoking) with the theory group of Gora Shlyapnikov. With his enthusiasm he taught me a lot of physics and any question could be discussed at almost any time. The same holds for Peter Fedichev and Dimitry Petrov. Peter also helped me a lot in battling with Mathematica’s syntax and I enjoyed the time spent together in Amsterdam outside the Laboratory. It is of great value for the experimental group how Dimitry is engaged with some experiment-related problems and I wish him to keep on having a fruitful collaboration.

Thanks to all colleagues of the other Amsterdam cold atom groups and all visiting scientists for creating a stimulating scientific environment. Especially with Dirk Voigt a useful exchange of knowledge and material has taken place.

I would like to thank Pepijn Pinkse, Allard Mosk, Tom Hijmans for supporting my start at the University of Amsterdam. I shared with Pepijn many diners at the mensa and coffees at the Kriterion. I wish him even more success in Munich. The same holds for Allard who, during his stay in Heidelberg, let me his flat in Amsterdam. This increased my life and light standard enormously and let me feel much more at home in Amsterdam. Tom Hijmans was very important for the start of the the project with his ideas about the atomic beam source. During my whole PhD period I was impressed and got inspired by his understanding of physics, although he never understood why only one Eifel Tower was build.

Thanks to Catherine Garrec everybody knows how rubidium spectroscopy lines look like in Amsterdam. With the hospitality of our Greek colleagues and friends Giannis Zacharakis and Adonius we spent a wonderful vacation in Crete.

I thank Wolf van Klitzing and Lorenzo Vichi as new members of the group and my friends and colleges at AMOLF, Rüdiger Lang, Cristof Strohhöfer, Bernd Riedmüller, and all others for company and moral support and I wish a productive time in the future to everybody.

I would also like to thank all my friends accompanying me spending a nice time in Amsterdam.

Finally, I would like to thank my mother Heide and sister Annette for their interest, tolerance and moral support.