Thermal field-flow fractionation of polymeric and particulate materials: applications and fundamental aspects
Mes, E.P.C.

Citation for published version (APA):
Mes, E. P. C. (2002). Thermal field-flow fractionation of polymeric and particulate materials: applications and fundamental aspects

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
List of Publications


Back cover illustration: Stereogram of a polystyrene molecule (detail) as it might appear in a good solvent, including van der Waals radii. The distance between the connected atoms is about 1.4 Å.

Viewing stereograms: Look through the picture as if gazing off into the distance. The picture will be blurry. Move the page very slowly away from your face. As you move the picture, the polystyrene image should appear when you are in the correct distance.