Optimal process analyzer selection and positioning for plant-wide monitoring

van den Berg, F.W.J.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1. Selection and Positioning: Introduction 1
 Based on: A.K.Smilde, F.W.J.van den Berg and H.C.J.Hoesloot 'Theory of Process Analytical Chemistry' submitted for publication
 1.1 Introduction 1
 1.2 Case Study 2
 1.3 Post-analysis Signal Reconstruction 3
 1.4 Real-time Signal Reconstruction 5
 1.5 Quality of Signal Reconstruction 6
 1.6 Measurability of Conversion in the Example 7
 1.7 Calculating Measurability in the Design Phase 9
 1.8 Extensions of the Method 12
 1.9 Problems and Future Outlook 13
 1.10 Thesis Summary 14

2. Selection and Positioning: Deterministic Grounds 15
 2.1 Introduction 16
 2.2 Tubular Reactor Model 18
 2.3 Theory 24
 2.4 Results 29
 2.5 Conclusions 32
 2.A Appendix 33
 2.B Appendix 35

3. Selection and Positioning: Stochastic Grounds 38
 3.1 Introduction 39
 3.2 Theory 42
 3.3 Tubular Reactor Model 52
4. Selection and Positioning: a Case Study

Based on: F.W.J. van den Berg, H.C.J. Hoesloot and A.K. Smilde 'Selection of Optimal Process Analyzers for Plant-Wide Monitoring' submitted for publication

4.1 Introduction
4.2 Theory
4.3 Experimental Section
4.4 Results and Discussion
4.5 Extensions
4.6 Conclusions
4. A Appendix
4. B Appendix

5. Selection and Positioning: Batch Processes

Based on work in preparation for publication

5.1 Introduction
5.2 Styrene Polymerization System
5.3 Extended Kalman State Observer
5.4 Optimal Sampling Time-point in a Batch Run
5.5 Results for 'Predictive Batch Monitoring'
5.6 Conclusions

References

Samenvatting

Nawoord