Understanding product innovation using Complex Systems Theory.
Frenken, K.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Table of contents

Introduction

11

PART I FORMAL MODELS AND APPRECIATIVE THEORISING

1. **Understanding technological evolution**
 1.1 Evolutionary models of technological development
 1.2 Appreciative theories of technological development
 1.3 Toward a complex systems approach

PART II INNOVATION IN COMPLEX SYSTEMS

2. **Complexity and decomposability of technological systems**
 2.1 Kauffman’s NK-model
 2.2 Design space search on fitness landscapes
 2.3 Complexity, decomposability, and satisficing
 2.4 Summary

3. **A generalised model of product innovation in complex systems**
 3.1 Altenberg’s generalised NK-model
 3.2 Function space search on fitness landscapes
 3.3 A formalisation of Henderson and Clark’s classification of innovations
 3.4 Summary

4. **Patterns in product innovation over the product life-cycle**
 4.1 A review of empirical studies on the product life-cycle
 4.2 Economies of scale and economies of scope
 4.3 The pleiotropy-principle: core and periphery in dominant designs
 4.4 Summary

PART III EMPIRICAL STUDIES OF TECHNOLOGICAL DEVELOPMENT

5. **Entropy statistics as a framework to analyse technological evolution**
 5.1 Entropy statistics
 5.2 Empirical analysis of aircraft and helicopter evolution
 5.3 Introduction to Chapter 6, Chapter 7, and Chapter 8
6. Variety and niche creation
 6.1 Introduction
 6.2 On the concept of variety
 6.3 Variety measures
 6.4 Application and results
 6.5 Niche theory
 6.6 Summary and conclusions

7. Scaling trajectories
 7.1 Introduction
 7.2 Methods
 7.3 A stylised history of civil aircraft
 7.4 Critical transition at the firm level
 7.5 Diffusion and convergence at the industry level
 7.6 Distinguishing types of innovation
 7.7 Comparison with designs for helicopters
 7.8 Reconstruction of firm strategies
 7.9 Concluding remarks

8. A complexity approach to innovation networks
 8.1 Introduction
 8.2 Evolutionary concepts of innovation
 8.3 A complexity approach to innovation networks
 8.4 Methods and materials
 8.5 Results
 8.6 Transnational networks: an emerging regime?
 8.7 Summary

PART IV CONCLUSION

9. Summary, conclusions, and further research questions
 9.1 Contributions of the study
 9.2 Summary
 9.3 Conclusions
 9.4 Further research questions I: applications of the generalised NK-model
 9.5 Further research questions II: variety and economic development
 9.6 Final remark

Bibliography

Appendix I: Routine to calculate cover size
Appendix II: Element-function matrices

Abstract in French
Abstract in Dutch