Earnings Management: Empirical Evidence on value relevance and Income smoothing.

van Praag, B.J.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
APPENDIX C: NOTES ON STATISTICAL METHODOLOGY

This appendix provides some brief explanation of the tests used in this thesis that are not part of the standard statistical software. In particular two tests are discussed here. First a brief overview is given of testing non-nested hypotheses with the use of Vuong Z-statistics is given. Vuong Z-scores are the standard methodology for comparison of different regression models in a value relevance setting. Second, the testing of significant differences in correlation coefficients as used in the income smoothing analyses is discussed.

Vuong Test29

This test is used to determine whether one model provides a statistically better fit than another model with the same dependent variable. When independent variables are compared using different regression models the test for significance is based on non-nested hypotheses. Using a likelihood ratio to express the difference in fit as a Z-score, models can be compared and tested. The procedure for computation is as follows:

Run the following two regressions:

A) $BHR = a + b\ NDE + e$ (NDE calculated for some EM proxy)
B) $BHR = a + b\ NI + e$

Gather the following variables
a. RSS_{NDE}, RSS_{NI}
b. $\epsilon_{NDE,i}, \epsilon_{NI,i}$
c. n

Calculate m_i with the following formula

$$m_i = \frac{1}{2} \log \left[\frac{RSS_{NDE}}{RSS_{NI}} \right] + n \left[\frac{(\epsilon_{NDE,i})^2}{RSS_{NDE}} - \frac{(\epsilon_{NI,i})^2}{RSS_{NI}} \right]$$

Summarize m_i for sample. This yields the likelihood ratio

To estimate the standard deviation regress m_i on unity with a NOORIGIN regression. The coefficient will be equal to:

$$\frac{1}{2} \log \left[\frac{RSS_{NDE}}{RSS_{NI}} \right]$$

29 The explanation below is based on Dechow 1994. A more detailed discussion can be found in Vuong (1989)
and tells us the mean difference in explanatory power between NI and NDE

Obtain the Z statistic with the following conversion

\[Z = t-value \times \left(\frac{(n-1)}{n} \right)^{1/2} \]

A positive and significant Z value implies that the NI is the model of choice.

Test of equality of two correlations\(^{30}\)

For the third hypothesis in the empirical analysis a test is used to determine whether correlations differ significantly. The test described below uses a Fischer Z-transform to express the difference in coefficients in terms of a Z-score. The null hypothesis is expressed as:

\[H_0 : \rho_1 = \rho_2 \]

Next the Fischer transformation is applied:

\[Z_r = \frac{1}{2} \left[\log(1 + r) - \log(1 - r) \right] \]

\[\sigma_z = \frac{1}{\sqrt{n - 3}} \]

\[\sigma_{z_1-z_2} = \sqrt{\frac{1}{n_1 - 3} + \frac{1}{n_2 - 3}} \]

\[Z = \frac{Z_1 - Z_2}{\sigma_{z_1-z_2}} \]

This is an insensitive test to decide whether two correlations have different strengths.

\(^{30}\) More information can be found in: Cohen, J and P. Cohen (1983)