Fanconi anemia and homologous recombination gene variants are associated with functional DNA repair defects in vitro and poor outcome in patients with advanced head and neck squamous cell carcinoma

DOI
10.18632/oncotarget.24797

Publication date
2018

Document Version
Other version

Published in
Oncotarget

License
CC BY

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Supplementary Table 5A: References and characteristics of selected canonical FA/HR gene set variants in the tumor samples of the patients in the study

<table>
<thead>
<tr>
<th>Pts</th>
<th>Gene</th>
<th>Protein change</th>
<th>SNP ID</th>
<th>cosmic70</th>
<th>MAF 1000G</th>
<th>CADD</th>
<th>REVEL</th>
<th>SIFT</th>
<th>PolyPhen2</th>
<th>ClinVar</th>
<th>Comments to potential functional effects</th>
<th>REF PMID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PALB2</td>
<td>L337S</td>
<td>rs45494092</td>
<td>0.0249</td>
<td>8.918</td>
<td>0.041</td>
<td>Deleterious</td>
<td>B</td>
<td>Conflicting interpretations</td>
<td>Possibly enriched in familial cutaneous malignant melanoma. Similar frequency in breast cancer than controls.</td>
<td>24949998 21618343 26283626</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>FANCC</td>
<td>V60I</td>
<td>rs138629441</td>
<td>0.185</td>
<td>0.101</td>
<td>T</td>
<td>B</td>
<td>Likely benign (Fanconi Anemia)</td>
<td>Likely to affect function</td>
<td>14695169</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>FANCG</td>
<td>R513Q</td>
<td>rs17885240</td>
<td>0.0129</td>
<td>15.01</td>
<td>0.016</td>
<td>T</td>
<td>Likely benign (Fanconi Anemia)</td>
<td>Increased frequency in children with AML</td>
<td>16643430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PALB2</td>
<td>T1099R</td>
<td>rs142132127</td>
<td>0.0249</td>
<td>8.918</td>
<td>0.041</td>
<td>Deleterious</td>
<td>B</td>
<td>as above</td>
<td>see above</td>
<td>see above</td>
<td>25186627 26315354</td>
</tr>
<tr>
<td>3</td>
<td>PALB2</td>
<td>L337S</td>
<td>rs45494092</td>
<td>0.0249</td>
<td>8.918</td>
<td>0.041</td>
<td>Deleterious</td>
<td>B</td>
<td>as above</td>
<td>see above</td>
<td>see above</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>FANCG</td>
<td>R513Q</td>
<td>rs17885240</td>
<td>0.0129</td>
<td>15.01</td>
<td>0.016</td>
<td>T</td>
<td>as above</td>
<td>as above</td>
<td>see above</td>
<td>see above</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>FANCG</td>
<td>R513Q</td>
<td>rs17885240</td>
<td>0.0129</td>
<td>15.01</td>
<td>0.016</td>
<td>T</td>
<td>as above</td>
<td>as above</td>
<td>see above</td>
<td>see above</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>FANCM</td>
<td>K953N</td>
<td>rs142864437</td>
<td>14.93</td>
<td>0.085</td>
<td>Deleterious</td>
<td>Damaging</td>
<td>Uncertain significance</td>
<td>No reports found</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>FANCA</td>
<td>A554V</td>
<td></td>
<td>19.95</td>
<td>0.636</td>
<td>T</td>
<td>Damaging</td>
<td>No reports found</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>FANCM</td>
<td>T77A</td>
<td>rs61746895</td>
<td>0.0129</td>
<td>2.724</td>
<td>0.041</td>
<td>T</td>
<td>Likely benign (Fanconi Anemia)</td>
<td>Neighboring MPH1 (ERCC4-related helicase) region</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>FANCF</td>
<td>P320L</td>
<td>rs45451294</td>
<td>0.0119</td>
<td>16.83</td>
<td>0.096</td>
<td>T</td>
<td>Possibly Benign (Fanconi Anemia)</td>
<td>No reports found</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>FANCF</td>
<td>R38H</td>
<td></td>
<td>23.2</td>
<td>0.14</td>
<td>Deleterious</td>
<td>Damaging</td>
<td>No reports found</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>FANCF</td>
<td>P320L</td>
<td>rs45451294</td>
<td>0.0119</td>
<td>16.83</td>
<td>0.096</td>
<td>T</td>
<td>Possibly Damaging as above</td>
<td>see above</td>
<td>see above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>FANCD2</td>
<td>N545S</td>
<td>rs145522204</td>
<td>0.0089</td>
<td>0.887</td>
<td>0.053</td>
<td>T</td>
<td>B</td>
<td>Benign</td>
<td>No reports found</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>FANCD2</td>
<td>R997Q</td>
<td></td>
<td>15.1</td>
<td>0.091</td>
<td>T</td>
<td>B</td>
<td>Benign</td>
<td>No reports found</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>FANCC</td>
<td>H256R</td>
<td></td>
<td>16.51</td>
<td>0.058</td>
<td>T</td>
<td>B</td>
<td>Uncertain significance</td>
<td>Reported in one individual in controls in pancreatic cancer study</td>
<td>15695377</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>RAD51C</td>
<td>G264S</td>
<td>rs147241704</td>
<td>0.023</td>
<td>0.202</td>
<td>B</td>
<td>Uncertain significance</td>
<td>Non-conservative amino acid substitution in conserved region (ATPase domain)</td>
<td>20400964 21990120</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOVD: hypomorph feature: partial complementation in cells, normal Rad51 foci; Increased frequency in breast / ovarian cancer. Moderate penetrance suggestion in ovarian cancer.
<table>
<thead>
<tr>
<th>14</th>
<th>RAD51B K243R rs34594234</th>
<th>0.0089</th>
<th>25.4</th>
<th>0.186</th>
<th>T</th>
<th>Damaging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Referenced in LOVD;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Predicted to affect function in evolutionary conservation analysis</td>
</tr>
<tr>
<td></td>
<td>Predicted to affect function in evolutionary conservation analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Likely pathogenic through bayesian analysis considering breast cancer family frequencies</td>
</tr>
<tr>
<td></td>
<td>Likely pathogenic through bayesian analysis considering breast cancer family frequencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>neighboring 840S is phosphorylation site</td>
</tr>
<tr>
<td>15</td>
<td>BRCA1 R841W rs1800709</td>
<td>0.005</td>
<td>5.12</td>
<td>0.355</td>
<td></td>
<td>Possibly Benign</td>
</tr>
<tr>
<td></td>
<td>Referenced in LOVD;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Predicted to affect function in evolutionary conservation analysis</td>
</tr>
<tr>
<td></td>
<td>Predicted to affect function in evolutionary conservation analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Likely pathogenic through bayesian analysis considering breast cancer family frequencies</td>
</tr>
<tr>
<td></td>
<td>Likely pathogenic through bayesian analysis considering breast cancer family frequencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>neighboring 840S is phosphorylation site</td>
</tr>
</tbody>
</table>

Abbreviations and listing as in Supplementary Table 4.