Missing Link Found? The "Runaway" Path to Supermassive Black Holes

DOI
10.1086/338118

Publication date
2001

Published in
Astrophysical Journal

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
MISSING LINK FOUND? THE “RUNAWAY” PATH TO SUPERMASSIVE BLACK HOLES

Toshikazu Ebisuzaki, 1 Junichiro Makino, 2 Takeshi Go Tsuru, 3 Yoko Funato, 4 Simon Portegies Zwart, 5 Piet Hut, 6 Steve McMillan, 7 Satoki Matsushita, 8 Hironori Matsumoto, 9, 10 and Ryohei Kawabe 11

Received 2001 May 22; accepted 2001 October 17; published 2001 November 6

ABSTRACT

Observations of stellar kinematics, gasdynamics, and masers around galactic nuclei have now firmly established that many galaxies host central supermassive black holes (SMBHs) with masses in the range of \(10^6 - 10^9\) \(M_\odot\). However, how these SMBHs formed is not well understood. One reason for this situation is the lack of observations of intermediate-mass BHs (IMBHs), which could bridge the gap between stellar mass BHs and SMBHs. Recently, this missing link (i.e., an IMBH) has been found in observations made by ASCA and Chandra of the central region of the starburst galaxy M82. Subsequent observations by Subaru have revealed that this IMBH apparently coincides with a young compact star cluster. Based on these findings, we suggest a new formation scenario for SMBHs. In this scenario, IMBHs first form in young compact star clusters through runaway merging of massive stars. While these IMBHs are forming, the host star clusters sink toward the galactic nucleus through dynamical friction and upon evaporation deposit their IMBHs near the galactic center. The IMBHs then form binaries and eventually merge via gravitational radiation, forming an SMBH.

Subject headings: galaxies: starburst — galaxies: star clusters — gravitational waves — methods: N-body simulations — radio lines: galaxies — X-rays: galaxies

1. INTRODUCTION

There is rapidly growing evidence for supermassive black holes (SMBHs) in the centers of many galaxies (for a review see Kormendy & Richstone 1995). There are too many examples to list here; indeed, although relatively few galaxies show conclusive evidence for central BHs, even fewer galaxies exist for which observations indicate that a central SMBH does not exist (Kormendy & McClure 1993).

Many authors have pointed out that the mass of the central BH, \(m_{\text{BH}}\), correlates with the mass of the bulge, \(M_\text{b}\); i.e., the ratio of \(m_{\text{BH}}\) to \(M_\text{b}\) is almost constant at 0.002 (Kormendy & Richstone 1995), 0.006 (Magorrian et al. 1998), and 0.001 (Merritt & Ferrarese 2001). This suggests that the formation of the central BH is somehow related to that of the bulge. The formation mechanism of SMBHs is not well understood; our theoretical understanding has not advanced much beyond the scenarios described by Rees (1978, 1984) in the early 1980s. In the famous diagram by Rees, there were basically two paths from gas clouds to SMBHs. The first is direct monolithic collapse; the second is via the formation of a star cluster, with subsequent runaway collisions leading to BH formation. Previous numerical studies, however, have demonstrated that neither path is likely. In the first, a massive gas cloud is much more likely to fragment into many small clumps in which stars then form, so direct formation of a massive BH from a gas cloud seems impossible. In the second, stellar dynamics in star clusters does not easily lead to the formation of SMBHs. A number of low-mass BHs (masses around \(10^2\) \(M_\odot\)) are formed via the evolution of massive stars, and these BHs do indeed sink to the center of the cluster through dynamical friction and form binaries by three-body encounters. Taniguchi et al. (2000) argued that intermediate-mass BHs (IMBHs) could be formed through successive merging of compact objects. However, recent N-body simulations (Portegies Zwart & McMillan 2000) have demonstrated that practically all of these BH binaries are ejected from the cluster by recoil of interactions with other BHs (or BH binaries) before they merge through gravitational radiation.

2. IMBHs IN M82

Matsumoto et al. (2001) have identified nine bright compact X-ray sources in the central region of M82 using recent Chandra data. The brightest source (number 7 in their Table 1) had a luminosity of \(9 \times 10^{44}\) ergs\(^{-1}\) in 2000 January, corresponding to a BH with a minimum mass of 700 \(M_\odot\) (assuming the Eddington luminosity). It probably consists of a single compact object, as its X-ray flux shows rapid time variation (Matsumoto et al. 2001). This is the first detection of a BH candidate with a mass much greater than 100 \(M_\odot\) but much less than \(10^5\) \(M_\odot\). Among the eight other sources, at least three (5, 8, and 9) have Eddington masses greater than 30 \(M_\odot\).

Satoshi Matsushita et al. (2000) observed the same region with the Nobeyama Millimeter Array and found a huge expanding shell of the molecular gas. They estimated the age and kinetic energy of the shell to be around 1 Myr and 10\(^{45}\) ergs, suggesting that a strong starburst took place a few milliyears ago.

T. Harashima et al. (2001, in preparation) observed the same region in the infrared (\(J, H, \text{ and } K\) bands) using the CISCO instrument on the Subaru telescope (T. Harashima et al. 2001, in preparation). They identified a number of young compact objects, and they argue that these objects are probably intermediate-mass black holes (IMBHs).
star clusters, at least four of them coinciding with the X-ray sources within the positional uncertainties of Chandra and Subaru. The other five Chandra X-ray sources are far outside the central starburst region of M82. Even so, two of them coincide with infrared sources in the Two Micron All-Sky Survey point-source catalog. The logical conclusion from these observations is that most of the Chandra X-ray sources, including the brightest one with an Eddington mass of 700 M_\odot, were formed in star clusters.

Therefore, we now have two important observational results. The first is that a BH with intermediate mass (100 < M_{bh}/M_\odot < 105) may have been found. The second is that it coincides with a young compact star cluster. In the following, we discuss how these findings change our understanding of the formation of SMBHs. We first discuss how IMBHs can be formed in young compact star clusters, then how IMBHs might grow into SMBHs.

3. IMBH FORMATION THROUGH RUNAWAY GROWTH

In our proposed scenario, IMBHs form and grow through successive mergings of massive stars (and IMBHs) in dense star clusters (see Fig. 1). More massive stars in star clusters have higher merging rates than less massive cluster members (or field stars) because of their larger geometrical cross sections and a stronger gravitational focusing and concentration to the central region by mass segregation in the cluster. In addition, complex resonances in binary—single star encounters contribute to a significant increase in the merging rate of massive stars (Hut & Inagaki 1985; McMillan 1986). If these effects are strong enough, we expect that a “merging instability” (Lee 1987), or a runaway growth of the most massive star, will occur in the cluster core. In fact, N-body simulations carried out by Portegies Zwart et al. (1999) have demonstrated that runaway merging can take place in systems containing only ~12,000 stars before stellar evolution eliminates the most massive stars.

Portegies Zwart et al. found that in one case, the most massive star experienced more than 10 collisions and reached a mass of around 200 M_\odot before evolving into a supernova. There is considerable uncertainty as to how much mass would remain as a BH after the supernova explosion of such a massive star, but it is quite likely that the remnant BH would still be one of the most massive objects in the cluster and that the runaway merging process would continue. Although the geometrical cross section of a BH is small, “merging” would take place when a star approached within its tidal radius, leading to a relatively large merger cross section.

In order for runaway merging to occur, the dynamical friction timescale for the most massive stars must be short enough that they can sink to the center during their lifetimes of several milliyears. The dynamical friction timescale may be expressed as follows (eq. [7-26] in Binney & Tremaine 1987):

$$t_{\text{fric}} = \frac{1.17}{\log A Gm} \left(\frac{r}{1 \text{ pc}}\right) \left(\frac{G}{r_{\text{h}} / 10 \text{ pc}}\right)^{-1/2} \times \left(\frac{M}{10^5 M_\odot}\right)^{1/2} \left(\frac{20 M_\odot}{m}\right) \text{yr},$$

where $\log A$ is the Coulomb logarithm, G is the gravitational constant, v_s is the local velocity dispersion, r is the distance from the center of the cluster, r_h and M are the half-mass radius and the total mass of the cluster, and m is the mass of the star. Here it is assumed that the background stellar distribution is that of the singular isothermal sphere. Thus, if the cluster has a very large core, the above equation underestimates the timescale for stars in the core. Such a large core, however, is probably unlikely.

In the following, we consider how dynamical friction works in the cluster found in M82. From the infrared luminosity, T. Harashima et al. (2001, in preparation) estimate that the total mass of the cluster is ~5 × 106 M_\odot. They also estimated the seeing-corrected radius of the cluster as 5 pc, which is most likely a good estimate of r_{h}. For $r = 0.5$ pc ~ 0.1r_{h}, a volume that contains about 5% of the total cluster mass, the dynamical friction timescale is less than 10 Myr. We therefore conclude that a significant fraction of the most massive stars sink to the cluster center and undergo runaway merging before exploding as supernovae.

After the BH has become much more massive than other cluster members, it forms a cusp near the cluster center (Bahcall & Wolf 1976) and continues to swallow other stars. Unfortunately, no realistic simulations of this phase of the evolution are available. Marchant & Shapiro (1980) performed Monte Carlo simulations of this stage for a simplified cluster containing 3 × 103 M_\odot stars and one 50 M_\odot seed BH. They found that the BH mass jumped to over 104 M_\odot (0.3% of the cluster mass) almost immediately after they put the BH into the system. After this initial rapid growth, a slower phase ensued, with a doubling timescale comparable to the relaxation time of the cluster. Their result should be regarded as a lower limit on the BH growth rate since realistic effects, in particular the presence of a mass spectrum, would greatly enhance the accretion rate. Taking these effects into account, it seems safe (even conservative) to suppose that 0.1% of the total cluster mass accretes to form a ~5000 M_\odot central BH in a few milliyears.

As stated above, there are more than 10 bright star clusters in the vicinity of the IMBH host cluster in M82, some of them apparently hosting small BHs. Their age is around 10 Myr (T. Harashima et al. 2001, in preparation). Also, the starburst in M82 is a long-duration event, having started at least 200 Myr ago (de Grijs, O’Connell, & Gallagher 2001). If we assume that clusters form at a constant rate, we conclude that around 200 clusters have been formed. We believe it is safe to assume that around 100 clusters similar to our host cluster have formed in total and that a considerable fraction of them host IMBHs.

4. BUILDING UP THE CENTRAL SMBH

We now describe how IMBHs formed in star clusters combine to form a central SMBH (see also Fig. 2). The growth rate of the IMBH in a star cluster slows down once all the massive stars are swallowed (after ~100 Myr). Subsequently, the cluster is subject to two evolutionary processes: evaporation through two-body relaxation and orbital decay (sinking) via dynamical friction. Evaporation is driven partly by thermal relaxation and partly by stellar mass loss. Portegies Zwart et al. (2001) and Portegies Zwart & McMillan (2001) estimated that the evaporation timescale for a tidally limited compact star cluster is around 2–3 half-mass relaxation times, which is of the order of a few gigayears for our star clusters. Rewriting equation (1) using appropriate scaling for this case, we find that the timescale on which the cluster sinks to the galactic
A gas cloud fragments to form many less massive clouds as it cools by radiation. Many stars are formed through this fragmentation, and a star cluster comes into being. There are two possible evolutionary paths for this cluster depending on its stellar density. If the star cluster is so dense that stellar mass segregation is faster than stellar evolution for the most massive stars (timescale $\sim 10^6 \text{yr}$), those stars sink to the cluster core by dynamical friction and form a dense inner core of massive stars at the cluster center. In this inner core, the massive stars undergo a runaway stellar coalescence and a very massive star forms, with mass exceeding $100 M_\odot$. This very massive star eventually collapses into a M_{BH}, which continues to grow by swallowing nearby massive stars. If the cluster is not dense enough for mass segregation to occur in 10 Myr, massive stars evolve into compact stellar remnants such as neutron stars and stellar mass BHs ($\sim 10 M_\odot$). Those stellar remnants slowly sink to the cluster center since they are heavier than other stars in the system and eventually form binaries. Successive three-body interactions make these binaries more tightly bound, and eventually they are ejected from the cluster by the slingshot mechanism.

According to our estimate in § 3, around 100 compact clusters have formed close to the center of M82 in the last 200 Myr. If we assume that half of these clusters contain 5000 M_\odot IMBHs and that these IMBHs actually merge, then the total BH mass at the center of the galaxy will be at least $5.25 \times 10^6 M_\odot$.

Having demonstrated that 5000 M_\odot IMBHs can form and reach the galactic center in a reasonable timescale, we now turn to the question of whether the multiple IMBHs at the center can merge. Begelman, Blandford, & Rees (1980) discussed the evolution of an SMBH binary at the center of a galaxy, taking into account dynamical friction from field stars and energy loss via gravitational radiation. They found that the merging timescale depends strongly on mass, and for a very massive BH with a mass of $10^8 M_\odot$ in which they were interested, merging took much longer than a Hubble time. For the IMBHs, however, the timescale for merging through gravitational radiation is many orders of magnitude shorter than that for the SMBHs considered by Begelman et al. (1980) because the loss cone depletion is not as effective as Begelman et al. assumed, at least for relatively small BH mass. The loss cone is filled in the timescale related to the central relaxation time of the cluster, which is much shorter than a cluster with IMBHs than that for a galaxy with SMBHs. Thus, IMBHs can reach high orbital velocities in short timescales. Recent extensive numerical simulations (Makino et al. 1993; Makino 1997; Quinlan & Hernquist 1997) have shown that the hardening of the BH binary through dynamical friction is in fact several orders of magnitude faster than the prediction from loss cone arguments. Although the number of particles employed (up to 256,000) was not large enough to model SMBH binaries, it was certainly large enough to model evolution of IMBH bi-
naries. Based on the N-body simulations above, Merritt (2000) estimated the timescale of merging (first through dynamical effects and then through gravitational radiation) as $T \sim 1.4 \times 10^8 (M/10^5 M_\odot) (c/200 \text{ km} \text{ s}^{-1})^{-3}$. We can safely conclude that the merging timescale for IMBHs with masses less than $10^5 M_\odot$ is 1 Myr or less.

Once one BH has become more massive than typical infalling BHs, it becomes extremely unlikely that it will be ejected since the recoil velocity from three-body interactions is inversely proportional to the mass (because of momentum conservation). Thus, even though some of the infalling BHs might be ejected by the slingshot mechanism, the central BH will continue to grow.

5. DISCUSSION

In this Letter, we have discussed the implications for our understanding of the SMBH formation mechanism of the recent discovery of an IMBH in M82. Our conclusion is that the IMBH found in M82 plays the role of “missing link” between stellar mass BHs and SMBHs.

Since we now have the first candidate for IMBHs, it seems natural to expect that SMBHs might be formed from them. We propose that IMBHs are formed in the cores of young compact star clusters through mergings of massive stars and BHs formed from them. These compact young clusters sink to the galactic center by dynamical friction. At the same time, they evaporate via thermal relaxation, stellar mass loss, and the effect of the parent galaxy’s tidal field. Thus, IMBHs are created and transported to the center of the galaxy, where they eventually merge to form SMBHs.

In the following, we discuss how we might confirm our new scenario. The most direct evidence would be the observation of gravitational radiation from close binary IMBHs or merging IMBHs. The Laser Interferometer Space Antenna (Jafry, Cornelisse, & Reinhard 1994), when completed, will be able to detect IMBH merging events even at cosmological distances. The formation rate of SMBHs is estimated to be one per $\sim 1-10$ yr. In our scenario, each SMBH is a product of \sim100 mergings of IMBHs or IMBH and growing SMBH. Therefore, we predict a much higher event rate for IMBH-IMBH and IMBH-SMBH merging, on the order of 1 per month or even 1 per week.

To test our hypothesis, searches for IMBHs in other galaxies are clearly necessary. In our view, IMBHs are likely to form in young compact star clusters created in nuclear starbursts. We predict that coordinated observations of nearby starburst galaxies at infrared, X-ray, and radio wavelengths, like those performed for M82, will reveal many more candidate IMBHs. In particular, the ultraluminous compact X-ray sources (Makishima et al. 2000; Colbert & Mushotzky 1999) may be directly related to IMBHs.

It is also vital to determine internal and external kinematics of the host star clusters of IMBHs. High-dispersion spectroscopy in the infrared with large ground-based telescopes such as Subaru should be able to determine the velocity dispersion of such a star cluster. Observations by Hubble Space Telescope would resolve the cluster and give us detailed information of its structure. Comparison of these results with theoretical models will then determine whether or not runaway merging can actually take place there.

The explosive star formation, induced by interactions or collisions of galaxies, are much more frequent in the earlier ($Z \sim 5$) phase of the universe. The formation of SMBHs by the scenario presented here could also explain the peak in the distribution of quasars at $z = 2-5$.

We thank the referee, David Merritt, for helpful comments. This work was supported in part by NASA through Hubble Fellowship grant HF-01112.01-98A and by the Research for the Future Program of Japan Society for the Promotion of Science (JSPS-RFTP 97-P01102). S. McMillan and S. Portegies Zwart acknowledge support of NASA ATP grants NAG 5.6964 and NAG 5-9264. P. H. acknowledges support from the Alfred P. Sloan foundation for research at the Hayden Planetarium of the American Museum of Natural History in New York.

REFERENCES

Jafry, Y. R., Cornelisse, J., & Reinhard, R. 1994, ESA J., 18, 219
Merritt, D. 2000, in ASP Conf. Ser. 197, Dynamics of Galaxies: From the Early Universe to the Present, ed. F. Combes, G. Mamon, & V. Charmandaris (San Francisco: ASP), 221
Rees, M. J. 1978, Observatory, 98, 210
Taniguchi, Y., Shioya, Y., Tsuru, T. G., & Ikeuchi, S. 2000, PASI, 52, 533

We thank the referee, David Merritt, for helpful comments. This work was supported in part by NASA through Hubble Fellowship grant HF-01112.01-98A and by the Research for the Future Program of Japan Society for the Promotion of Science (JSPS-RFTP 97-P01102). S. McMillan and S. Portegies Zwart acknowledge support of NASA ATP grants NAG 5-6964 and NAG 5-9264. P. H. acknowledges support from the Alfred P. Sloan foundation for research at the Hayden Planetarium of the American Museum of Natural History in New York.