Characterisation of polymers and particles by asymmetrical flow field-flow fractionation
van Bruijnsvoort, M.

Citation for published version (APA):
van Bruijnsvoort, M. (2002). Characterisation of polymers and particles by asymmetrical flow field-flow fractionation

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
CHAPTER 5

Characterisation of core-shell latexes with flow FFF-MALS

ABSTRACT

Flat-channel asymmetrical flow Field-Flow Fractionation (FFF) with multi-angle light scattering (MALS) detection was used to study the swelling behaviour of core-shell particles with either carboxylated or hydroxylated shells as a function of pH and ionic strength. The equilibration time of the most heavily carboxylated core-shells appeared to be of the order of several hours. At low ionic strength (5 mmol l⁻¹), the carboxylated core-shells showed a definite swelling response to a change in pH in the range from 5 to 10, resulting in an increase in the hydrodynamic radius by 24% to 118%, depending on the degree of carboxylation. A much smaller response was found for the change of the r.m.s. radius as measured with MALS, indicating that the scattering plane is moving inwards during the swelling process due to a decreasing density of the shell. The hydroxylated core-shells appeared to be inert to a change in pH. Also the response of two expanded (pH = 10) carboxylated core-shells on an increase in the ionic strength was studied. Comparison of the results of these ionic strength experiments with theoretical predictions based on Donnan equilibrium led us to the conclusion that a significant amount of counter-ion condensation may take place in the shells.
INTRODUCTION

The visco-elastic properties of paints and coatings are of major importance with regard to their application characteristics, such as levelling out of brush or roller marks. Due to their special rheological behaviour, core-shell particles play an important role in tuning these properties for water-borne coatings (latex paints), because the shells can swell or shrink in response to a change of environmental conditions, such as pH or ionic strength. For acidic (e.g. carboxylated) gels, the mechanism underlying this swelling behaviour was believed to have its origin in the electrostatic repulsion between likewise charged groups, but it is well accepted now that the physical dimensions of a polymer gel are determined by the balance between osmotic pressure and polymer elasticity. In uncharged gels this osmotic pressure arises from the configurational entropy of the polymer chains, while in polyelectrolyte gels the main contribution to the osmotic pressure comes from the translational entropy of free ions in the gel. In the latter case, a Donnan equilibrium requires a higher concentration of free ions in the gel and thus leads to an increase of the osmotic pressure, which causes the gel to swell. The time constant of the swelling process has been shown to be highly variable, depending on the size and composition of the gel and on the environmental conditions, such as the buffer capacity.

The subject of this study is to investigate the suitability of flow Field-Flow Fractionation (FFF), coupled to a Multi-Angle Light Scattering (MALS) detector, for the characterisation of core-shell particles and their swelling behaviour.

Field Flow Fractionation

Field-Flow Fractionation is a family of analytical separation techniques, which was pioneered by Giddings from 1966 onward. FFF has been extensively reviewed recently. Basically, all FFF methods use two fields: an axial flow field that takes care of the elution of the components through a tapered rectangular or trapezoidal flat channel and a cross-field, perpendicular to the axial field, forcing the components toward one of the channel walls, the collection wall. The cross-field, which may be any field that is able to interact with the components, determines the sub-class of the FFF techniques. For example, we distinguish flow FFF, Thermal FFF (ThFFF), Sedimentation FFF (SdFFF), Magnetic FFF (MFFF) in which the cross field is established by a cross flow, a thermal gradient, an artificial gravitational field and a magnetic gradient respectively.

In the steady-state situation, the force on the analytes due to the cross-field is compensated by diffusional forces in the opposite direction, resulting in a Boltzmann distribution with the centre of mass at a distance l from the collection wall. Generally, l is expressed relative to the channel width as:

$$\lambda = \frac{l}{w}$$

(1)
If an error of up to 10% is acceptable, the retention ratio (Rf) relating the retention time (tR) to the void time (t0), can be expressed as:\(^{14}\)

\[
R_f = \frac{t_0}{t_r} = 6\lambda
\] \hspace{1cm} (2)

for \(R_f \leq 0.5\). For flow FFF, \(\lambda\) can be expressed in operational variables:\(^{14}\)

\[
\lambda = \frac{DV_0}{F_{cr}w^2}
\] \hspace{1cm} (3)

where \(V_0\) is the channel void volume, \(F_{cr}\) is the cross-flow rate and \(D\) is the diffusion coefficient of the analyte. Obviously, the diffusion coefficient is the only analyte property that governs retention in this case. Within the validity regime of Equation 2, we arrive via the Stokes-Einstein equation (for spherical particles),

\[
D = \frac{kT}{6\pi\eta r_H}
\] \hspace{1cm} (4)

where \(k\) is the Boltzmann constant, \(T\) the absolute temperature, \(\eta\) the viscosity of the solvent and \(r_H\) the hydrodynamic radius of the particle, at:

\[
r_H = \frac{kT V_0 t_r}{\pi \eta F_{cr} w^2 t_0}
\] \hspace{1cm} (5)

Thus, retention time is a linear function of particle size \((r_H)\) and can be readily calculated from the experimental flow FFF data.

The above sketched situation is valid as long as the diffusion factor is significant compared to the lateral force on the particles. However, at very high cross-fields and/or with large particles (low \(D\)), the particle motion towards the wall is no longer counteracted by diffusion anymore, but is halted by physical contact with the collection wall.\(^{11-16}\) The distribution of the particles is then determined by the particle size only, with smaller particles moving through the interstitial space between the larger particles, and thus approaching the collection wall. If this is the predominant mechanism, the elution order will be reversed: the larger particles are eluted faster then the smaller ones. This is called the steric mode of FFF, which is in principle possible for all sub-classes of Field Flow Fractionation. In the case of normal mode FFF of particles, these steric effects should always be taken into account. Giddings showed that, in order to account for the above mentioned effects, Equation 2 should be written as:\(^{14}\)

\[
R_f = 6\alpha + R(\lambda)
\] \hspace{1cm} (6)

where \(\alpha\) is defined as:

\[
\alpha = \frac{r_H}{w}
\] \hspace{1cm} (7)

With equations (3) and (4) this results in a corrected expression for the particle size:

\[
r_H = \frac{1}{12} \left(R_f w + \sqrt{R_f^2 w^2 - \frac{24kT V_0}{\pi \eta F_{cr} w}} \right)
\] \hspace{1cm} (8)
Note that only steric effects are considered here, and that other hydrodynamic artefacts, such as lift forces, are not included.

FFF of core-shell particles

Combinations of different FFF techniques for the characterisation of core-shell particles have been reported. Ratanathanawongs et al. combined either SdFFF and flow FFF or flow FFF and ThFFF, all with UV detection, for a detailed study of the behaviour of core-shell particles with a carboxylated shell.\(^{1718}\) Moon et al. studied core-shell particles with a poly(L-lactide) shell with flow FFF in hyperlayer mode and UV detection.\(^{19}\) Asymmetrical flow FFF and Photon Correlation Spectroscopy (PCS) have been used by Othegavan et al. to characterise fluorocarbon cores with highly cross-linked polystyrene shells.\(^{20}\) Karlsson et al. studied the swelling behaviour of carboxylated core-shell latexes with SdFFF and PCS.\(^{21}\)

Recently, Mes et al. studied the swelling properties of carboxylated core-shell latexes with ThFFF-MALS, combined with PCS.\(^{22}\) This study showed that the use of a MALS detector, combined with a size-separation method, gives, apart from particle size, valuable extra information. However, the retention behaviour in a ThFFF channel strongly depends on the chemical composition of the particles and the eluent, which makes it hard to draw conclusions about the absolute particle size from the retention data alone. Flow FFF does not have this problem because in this case the only analyte property that influences retention is the diffusion coefficient, which is related to the particle size.

EXPERIMENTAL

Instrumental

The flow FFF equipment used was a flat FFF channel by ConSenxus (Ober-Hilbersheim, Germany). A trapezoidal channel with a length of 286 mm, an inlet width of 21.2 mm and an outlet width of 4.7 mm, was cut out of a Mylar sheet with a nominal thickness of 350 μm, giving a channel volume of approximately 0.75 ml. The collection wall was a regenerated cellulose ultra-filtration membrane, with a cut-off of 30 kDa (C030F, Celgard GmbH, Wiesbaden, Germany). Solvent and sample delivery pumps were a Constametric 3200 (TSP) and a MicroStar K100 (Knauer) pump, respectively. Sample injection was performed with a Rheodyne 7010 six-way injection valve (Berkeley, CA, USA) and a 20 ml loop. Cross-flows were monitored and controlled with a series L30 LiquiFlow mass-flow meter/controller (Bronkhorst High-Tech, Ruurlo, The Netherlands).

Detection systems were a Spectroflow 757 UV detector (Applied Biosystems, Ramsey, NJ, USA) and a DAWN-DSP MALS detector (Wyatt Technology, Santa Barbara, CA, USA), equipped with a 30 mW argon ion laser (488 nm).
Samples

The core-shell samples were kindly provided by AKZO (Arnhem, The Netherlands) as dispersions in water. Table 1 lists the definitions and the reported properties of the samples. Before injection, all latexes were diluted 1:5000 in the appropriate buffer solution to a final concentration of approximately 40 μg ml\(^{-1}\).

Chemicals

Mobile phases were prepared from 2 mmol l\(^{-1}\) Tris buffer (pH values 7 to 10) or benzoate buffer (pH values 5 and 6) and adjusted to the desired ionic strength with sodium chloride. The mobile phases also contained 300 mg l\(^{-1}\) Brij 35 (Acros Organics, NJ, USA) to reduce adsorption of the particles on the collection wall. All solutions were prepared with sub-boiled water and filtered over a 0.45 μm HV filter (Millipore, Bedford, MA, USA).

Calibration of the MALS was done with toluene (99+, Acros Organics, NJ, USA), filtered twice over a 20 nm Anodisc 47 filter (Whatman, Maidstone, England). Normalisation of the MALS was done with Pullulan P-20 standard (\(M_w = 23,700\), \(M_w/M_n = 1.07\), Polymer Laboratories, Amherst, MA, USA), which is reported to have a Stokes diameter of 9 nm in water.\(^{23}\)

Bromo-phenol blue (BDH, Poole, UK) was used to verify the FFF focussing point, and calibration of the FFF channel was performed with type I horse spleen ferritin (Sigma, St. Louis, MO, USA).

All chemicals not explicitly specified were analytical grade and obtained from standard suppliers.

Procedures

The position and shape of the FFF focussing point was visually inspected by injecting a solution of 2 mg ml\(^{-1}\) bromo-phenol blue, which was made basic by the addition of a few drops of 0.1 mol l\(^{-1}\) sodium hydroxide. The calibration of the FFF channel was performed by the injection of 1 mg ml\(^{-1}\) ferritin. From the retention data, determined from the UV signal at 280 nm, the height (w) of the channel was calculated according to the procedure described by Litzen.\(^{24}\) The eluent during this calibration procedure was 5 mmol l\(^{-1}\) sodium chloride solution. The channel was judged to be well assembled if complete resolution of the ferritin monomer and dimer could be obtained.
Table 1. Summary of sample properties as provided by AKZO (Arnhem, The Netherlands). For convenience the original sample codes have been replaced for the ones in the first column. MAA: methacrylic acid, BMA: butylmethacrylate, Sty: styrene, BA: butylacrylate, MMA: methylmethacrylate, HEMA: hydroxyethylmethacrylate. The fifth column (OH/acid) gives the base concentration of the shell in case of the OH samples, or the acid concentration of the shell in case of the Carb samples.

<table>
<thead>
<tr>
<th>Sample code</th>
<th>Core used</th>
<th>Core composition (% w/w)</th>
<th>Shell composition (% w/w)</th>
<th>OH/acid composition (mmol/1 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core1</td>
<td>-</td>
<td>80 20</td>
<td>- - -</td>
<td>0</td>
</tr>
<tr>
<td>Core2</td>
<td>-</td>
<td>80 20</td>
<td>- - -</td>
<td>0</td>
</tr>
<tr>
<td>Carb1</td>
<td>Core1</td>
<td>80 20</td>
<td>34.4 61.3 4.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Carb2</td>
<td>Core2</td>
<td>80 20</td>
<td>36.6 52.6 10.8</td>
<td>1.25</td>
</tr>
<tr>
<td>Carb3</td>
<td>Core1</td>
<td>80 20</td>
<td>38.8 44 17.2</td>
<td>2</td>
</tr>
<tr>
<td>OH1</td>
<td>Core1</td>
<td>80 20</td>
<td>31.6 61.7 -</td>
<td>0.5</td>
</tr>
<tr>
<td>OH2</td>
<td>Core2</td>
<td>80 20</td>
<td>29.5 54.1 -</td>
<td>1.25</td>
</tr>
<tr>
<td>OH3</td>
<td>Core2</td>
<td>80 20</td>
<td>27.5 46.4 -</td>
<td>2</td>
</tr>
</tbody>
</table>

The fractionations were performed in three steps. After an initial stabilisation time of 10 s, the sample was injected during 50 s at 0.15 ml min\(^{-1}\). Then, relaxation/focussing was carried out during a pre-established time (visual inspection with bromo-phenol blue), long enough for the sample to concentrate in a narrow band of about 1 mm thickness, at a total flow rate equal to that during elution. This was immediately followed by the elution phase, in which the eluted sample was continuously monitored successively by the UV detector (254 nm for the core-shell latexes) and the MALS. After completion of the run, the channel was rinsed for another 5 minutes with zero cross-flow.

Diffusion coefficients were calculated according to Litzen and Wahlund. In order to get accurate results at low retention, as in the peak shape experiments, a numerical solution for the exact expression for \(R^* \) was used. The results were corrected for steric foldback according to Equation 6. Hydrodynamic radii were obtained from the diffusion coefficients via the Stokes-Einstein equation for spherical particles.

MALS detection was carried out with 11 detectors at scattering angles from 30° to 150°. The collected data were processed with the Astra for Windows software (Wyatt Technology, Santa Barbara, CA, USA), version 4.5, using a second order Berry fit.
RESULTS AND DISCUSSION

In order to get an impression of the relaxation of the core shells as a response to a change in pH, the most carboxylated sample, Carb3, was dispersed in a pH 10 Tris buffer and the radius was monitored during 5 hours. Figure 1 shows the results of this experiment for r_H, indicating that the relaxation process takes approximately 5 hours for completion. To ensure complete adaptation to the conditions of pH and ionic strength in further experiments, the samples were allowed to equilibrate in the buffer overnight (at least 12 hours).

To study the importance of particle-particle and particle-wall interactions and to estimate an operating domain where these interactions are minimised, the influence of the flow conditions (cross flow velocity) on the apparent hydrodynamic radii of the particles was determined. The experiments were performed at pH 10 because this was the highest value in the experimental range corresponding to the maximum particle size. Inter-particle and particle-wall interactions may be expected to be most pronounced for the largest particles. As is shown in Figure 2, the apparent hydrodynamic radii of the most heavily carboxylated core-shells, i.e. Carb2 and Carb3, increase when the cross flow exceeds 0.3 ml min$^{-1}$. The effect on the other core-shell particles is negligible. The r.m.s. radii for all particles, as measured with MALS, were independent of the cross flow, indicating that the observed effect on the hydrodynamic radii of Carb2 and Carb3 has its origin in particle-particle and/or particle-wall interactions. This is further supported by the observed effect of the cross-flow on the peak symmetry.

![Figure 1. Relaxation of r_H of Carb3 after dispersion of the sample in 2 mmol 1$^{-1}$ Tris buffer at pH = 10.](image-url)
The asymmetries of the peaks increase as a function of F_{cr}, as is shown in Figure 3 for Carb3 and Carb1. At low cross-flows both peaks are slightly fronting ($A_{10} < 1$), but on increasing F_{cr} we see an increase of A_{10} into the tailing domain for Carb3, while the asymmetry of the Carb1 peak remains constant. The increased asymmetry may be due to direct particle-wall interaction, but also to entanglement of shells with the shells of already adsorbed particles. Also, entanglement of shells of dispersed (non-adsorbed) particles may give rise to an increase of D and so to a higher retention and tailing peaks. Thus, in order to get reliable results, the operational conditions for the FFF experiments on Carb2 and Carb3 should be chosen in such a way, that the cross-flow does not exceed 0.3 ml min$^{-1}$.

A typical example of a fractogram obtained with our flow FFF-MALS equipment is shown in Figure 4A for Carb3. The monodispersity of the samples is clear from the plot of the calculated r.m.s. radius. Figure 4B shows a fractogram of OH3, which consistently yielded tailing peaks. The inserted plot of the r.m.s. radius immediately makes clear that this sample is not monodisperse, and that it actually consists of a rather monodisperse fraction and a polydisperse fraction at the higher end. From this example the power of flow FFF-MALS is evident.

From the hydrodynamic radii the maximum swelling factor q_m on a volumetric basis for the shells was calculated, by comparing the shell volumes at pH=10 to those at low pH (the average of the measurements at pH=5 and pH=6). For Carb1, Carb2 and Carb3 q_m values were found of 3.8, 19.3 and 33.9, respectively.

Figure 2. Apparent hydrodynamic radius as a function of cross flow in 2 mmol l$^{-1}$ Tris buffer at pH = 10 and [Na$^+$] = 5 mmol l$^{-1}$. Samples are Carb1 (•), Carb2 (†), Carb3 (♦), OH2 (x) and Corel (▲).
Figure 3. The asymmetry factor measured at 10% of the peak height for Carb1 (■) and Carb3 (♦). Same conditions as in Figure 2. The lines are linear regression lines calculated for the two data sets, added to guide the eye.

Figure 4. Fractogram of Carb3 (A) and OH3 (B). The drawn line represents the MALS signal at a 90° scattering angle; the scatter plot shows the r.m.s. radii. Sample dilutions 1:5000. Injection volume 20 µl. \(F_w \): 2.5 ml min\(^{-1}\). \(F_c \): 0.3 ml min\(^{-1}\). Tris buffer (pH = 10) with 5 mmol l\(^{-1}\) ionic strength.
First, the behaviour of the core-shells at different pH's at a constant ionic strength of 5 mmol l^{-1} was studied. Swelling of the carboxylated core-shells with increasing pH is obvious from Figure 5A: the radius of the most heavily carboxylated shell (Carb3) increases by a factor of 2.2 over the experimental pH range, the radius of the intermediately carboxylated shell (Carb2) increases by a factor of 1.8 and that of the least carboxylated one (Carb1) increases by a factor of 1.2. As a reference, a 155 nm polystyrene latex standard was fractionated, which, expectedly, turned out to be completely inert to a change in pH. Surprisingly we also noticed a significant increase of the radius of both core particles (Core1 and Core2) with a factor 1.1 (13%). As the increase seems to start from the beginning of the pH range (acidic conditions), it is not probable that alkaline hydrolysis of the BMA ester groups is responsible for this behaviour. Probably a small fraction of the ester groups already was hydrolysed in the original material.

Figure 5B shows us that the effect of pH on the r.m.s. radius, as measured by MALS, is much less than the effect on the hydrodynamic radius. The r.m.s. radius of Carb3 increased by a factor of 1.2 over the whole experimental pH range, while the r.m.s. radius of Carb2 only grew a factor 1.1. There was no noticeable increase of the r.m.s. radii of Carb1 and the bare core. Swelling of the particles is also reflected in the \(r_g/r_H \) ratios as depicted in Figure 5C. At low pH values, these ratios for the carboxylated core-shells, as well as the bare cores, are close to the theoretical value for scattering spheres (\(\sqrt{\frac{2}{3}} = 0.775 \)). However, on increasing pH (and thus with increasing swelling) the ratio drops. For the two most carboxylated shells, Carb2 and Carb3, this effect is quite strong. To explain this, it should be realised that scattering on a particle only occurs if there is a difference in refractive index between the scattering particle and the dispersion medium. If the shell expands and absorbs more liquid from the dispersion medium, the shell density will decrease and the refractive index of the shell will more and more approach that of the medium. The result is that the scattering area moves from the surface of the shell inward toward the more dense, deeper regions.

Figure 6A displays the effect of pH on the hydrodynamic radius of the hydroxylated core-shells. The swelling appears to be much less than that of the carboxylated core-shells. The hydrodynamic radius increased by a factor of 1.1 over the entire pH range, so that the effect may be completely attributed to the swelling of the core.

Figures 6B and 6C show the \(r_g \) and \(r_g/r_H \) data for the hydroxylated shells. Since the influence of a change in pH on the hydrodynamic radii of these shells was found to be marginal, it is no surprise that the r.m.s. radii are inert to changes in pH. The curves of the \(r_g/r_H \) ratio do show a significant downward trend, but also follow the curve of the bare core, implying that the swelling behaviour of the hydroxylated shells may be largely attributed to the core itself.
Figure 5. Hydrodynamic radius (A), r.m.s. radius (B) and r_g/r_H ratio (C) as function of pH for Carb1 (■), Carb2 (●), Carb3 (▲), Core1 (●), Core2 (×). The dashed line in Figure 5C represents the theoretical value for dense spherical scatterers.

Figure 6. Hydrodynamic radius (A), r.m.s. radius (B) and r_g/r_H ratio (C) as function of pH for OH1 (■), OH2 (▲), OH3 (●) and Core2 (×). The dashed line in Figure 6C represents the theoretical value for dense spherical scatterers.
The experiments on the influence of the pH on the swelling behaviour of the core-shell particles as described above have been conducted at a constant ionic strength of 5 mmol l\(^{-1}\). The effect of the ionic strength of the dispersing solution on the swelling was studied at pH = 10, because the swelling effects are most manifest at high pH. In Figure 7 the results of these studies are shown for Carb1 and Carb3. It is clear that the shells condense significantly with increasing ionic strength.

The swelling behaviour of the shells of the particles can be compared with the theoretical model for swelling of polymer gels with fixed ionic groups as developed by Flory.\(^{27}\) Flory derived expressions for the maximum swelling ratio of a polymeric network, based on Donnan equilibrium of ions inside and outside the gel and the network elasticity. He discerned two ionic strength regimes. In solutions with an ionic strength that is low compared to the concentration of fixed charges in the gel, the theory predicts a swelling ratio for the gel independent of the ionic strength. The maximum swelling ratio \(q_m\) is then expected to be a function of the fixed charge density \(c_i\) in the (swollen) gel only:

\[
q_m \propto c_i^{1/2}
\]

(9)

It is interesting to compare this prediction with the volumetric swelling ratios for the shells as calculated from the hydrodynamic radii of the carboxylated particles at an ionic strength of 5 mmol l\(^{-1}\). From the mass fraction of metacrylic acid in the shells of the three carboxylated core-shell particles and the swelling ratio of the shells at pH = 10, the concentration of ionisable groups in the shells at pH = 10 could be calculated. The 3-point regression line of log \(q_m\) vs. log \(c_i\) was found to have a slope of 1.63, against a predicted value of 1.5.

Figure 7. Shell thickness at pH 10 as a function of the ionic strength for Carb1 (■) and Carb3 (♦). The solid lines represent predictions based on the theoretical model discussed in the text.
The other ionic-strength regime discerned by Flory is when the concentration of the fixed charges in the gel is much lower than the ionic strength \(I \) of the surrounding solution. For this regime Flory derived the expression:

\[
q^3 \propto \frac{c_i^2}{I}
\]

(10)

When it is assumed that at \(pH = 10 \) the ionisation of the carboxylic groups in the shells is complete, the requirements for this ionic strength regime to hold are not met under the experimental conditions of this series of experiments. Under all conditions the concentration of ionisable groups in the swollen shells is larger than, or comparable to the salt concentration in the outside solution. Still, as is shown in Figure 7, the effect of the ionic strength on the swelling follows the trend predicted by Equation 10. Only at very low ionic strength a flattening of the curve for Carb3, compared to the predicted line, is seen. This, however, may be explained by the approach of the elastic limit of the polymer network. The good match between the experimentally observed swelling ratios and the theoretical prediction may be explained by counter-ion condensation. Due to the complexation of buffer (sodium) ions with the carboxyl-groups of the shell material, the actual concentration of fixed ionised groups in the gel may be much lower than expected based on the assumption of complete ionisation. When counter-ion condensation would be significant, the conditions for Equation 10 to hold might be met.

CONCLUSIONS

We have demonstrated that asymmetrical flow FFF with MALS detection is a solid method for the characterisation of core-shell particles. When combined, the two techniques synergistically co-operate in the elucidation of the swelling behaviour of the shells. As far as the response of the core-shell particles to a change in ionic strength is concerned, the results appeared to be consistent with theoretical predictions based on the Donnan equilibrium concept, provided that the effective degree of ionisation of the carboxylic groups is much lower than may be expected from mere acid-base considerations. The latter suggests that other factors, such as the occurrence of counter-ion condensation, play an important role in the swelling equilibrium. The exact nature of particle-wall and particle-particle interactions in FFF needs further investigation.
REFERENCES