Influence of medical intervention on sympathetic activity in heart failure

de Milliano, P.A.R.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Metoprolol induced changes in myocardial 123I-MIBG uptake in Parkinson’s disease.

Paul A.R. de Milliano, MD; Berthe L.F. van Eck-Smit, MD, PhD; Andre C. de Groot, MD; Kong I. Lie, MD, PhD.

A 58-year-old man with Parkinson's disease for many years was referred to the department of cardiology because of progressive and severe symptoms of orthostatic hypotension. Examination revealed a drop in systolic blood pressure on standing of 25 mm Hg. Heart rate at rest was 84 beats per minute and increased to 88 beats per minute on standing. Cardiac examination showed no abnormalities. 2D echocardiography was normal except for a slightly decreased ejection fraction (48%, Simpson rule). He was treated with metoprolol with a gradual increase in dose to 200 mg/day. After 6 months of treatment, symptoms of orthostatic hypotension completely disappeared. On examination, no drop in blood pressure was observed. Before and after 6 months of treatment SPECT 123I-MIBG scintigraphy of the heart was performed. At baseline, almost no myocardial MIBG uptake was observed as displayed in figure 1 showing short axis reconstructions of 123I-MIBG SPECT acquisitions. After treatment, a dramatic increase in MIBG uptake can be seen (figure 2, showing the same reconstruction as figure 1) indicating restoration of functional nerve endings in the myocardium with metoprolol.

Patients with Parkinson's disease frequently exhibit symptoms of autonomic failure suggesting derangements of the sympathetic and/or parasympathetic nervous system. Parkinson patients with sympathetic neurocirculatory failure have a loss of cardiac norepinephrine spillover and absence of myocardial 6-[18F]fluorodopamine-derived radioactivity. In early and late stages of Parkinson's disease, a decreased uptake of 123I-Metaiodobenzylguanidine (MIBG) has been described. MIBG is a structural analog of norepinephrine (NE) following the same pathways as NE. A decreased myocardial uptake of 123I-MIBG indicates a loss of functional myocardial nerve endings.

References

Metoprolol induced changes in myocardial 123I-MIBG uptake in Parkinson's disease

Figure 1. Short-axis reconstruction of cardiac 123I-MIBG SPECT acquisitions before treatment with metoprolol in a patient with Parkinson's disease.

Figure 2. Short-axis reconstructions of cardiac 123I-MIBG SPECT acquisitions after 6 months of treatment with metoprolol in the same patient as in figure 1.